Basic Topics in PROLOG

e Practical Matters

e A Brief Reminder

e Cases and Structural Induction
e Inputs and Outputs

e Context Arguments

e Accumulator Passing
e Last Call Optimization
e Partial Data Structures

e Difference Lists
e Counters

e Backwards Correctness

Practical matters

Two Prologs are installed on the OSU Ling. Dept. UNIX machines:

e Sicstus:
e starting:
— at UNIX prompt: prolog
— in Emacs: M-x run-prolog
e manual (652 pages — so don't just print it!): links on course web page

Or “dm/resources/manuals/sicstus/
e SWI-Prolog:
e starting: pl
e loading graphical tracer: 7- guitracer.
e manual: links on course web page or ~dm/resources/manuals/swi-prolog/

A brief reminder (1)

PROLOG (PROgrammation LOGique) invented by Alain Colmerauer and
colleagues at Marseille in the early 70s. Parallel development in Edinburgh.

A PROLOG program is written in a subset of first order predicate logic:

e constants naming entities

— Syntax: starting with lower-case letter, a number, or in single quotes
— Examples: twelve, a, q-1

e variables over entities
— Syntax: starting with upper-case letter or underscore
— Examples: A, This, _twelve, _

e predicate symbols naming relations among entities
— Syntax: predicate name starting with a lower-case letter with
parentheses around comma-separated arguments
— Examples: father(tom,mary), age(X,15)

A brief reminder (2)

A PROLOG program consists of a set of Horn clauses:

e unit clauses (facts)

— Syntax: predicate followed by a dot
— Example: father(tom,mary) .

e non-unit clauses (rules)
— Syntax: rel, :- rel;, ..., rel,.
— Example:
grandfather (01d, Young) :-
father(01d,Middle),
father(Middle,Young) .

Cases and Structural Induction 4




Basic use of arguments: Discriminate between cases

direction_adjective(north, boreal).
direction_adjective(south, austral).
direction_adjective(east, oriental).
direction_adjective(west, occidental).

abs_diff (X, Y, Diff) :-

compare(R, X, Y),

abs_diff(R, X, Y, Diff).
abs_diff (<,X,Y,Diff) :- Diff is Y-X.
abs_diff (>,X,Y,Diff) :- Diff is X-Y.
abs_diff(=,_,_,0).

Cases and Structural Induction

Compound terms as data structure for recursive relations

To define (interesting) recursive relations, one needs a richer data structure
than the constants used so far: compound terms.

e A compound term comprises a functor and a sequence of one or more
terms, the argument. Atoms can be thought of as functors with arity 0.
e Compound terms are standardly written in prefix notation.
Example: bin_tree(s, np, bin_tree(vp,v,n))

Infix and postfix operators can also be defined, but need to be declared
using op/3.

Cases and Structural Induction 6

Lists as special compound terms

Lists are represented as compound terms.

e empty list: represented by the atom “[1"

e non-empty lists: symbol " ." as binary functor . (first,rest)
Example: .(a, .(b, .(c, .(d,[1))))
Special notations:

e [ elementl | restlist ]

Example: [a | [b | [c | [d | [111]1]

o [ elementl , element2] = [ elementl | [element2 | []]1]
Example: [a, b, c, d]

Cases and Structural Induction

Four equivalent representations:

1. .(a, ., .(c, .(d, NN 4. —

a
5
5 [al | [cl dI| 11171 o~
C

o

3. [a,b,c,d]

Cases and Structural Induction 8




Structural induction

is_list([1). % a) base/non-recursive case
is_list([_|Tail]) :- % Db) step/recursive/inductive case
is_list(Tail).

% arithmetic_value(Expr,Value)
% is true when Expr represents an arithmetic expression and
% Value is its numeric value

arithmetic_value(c(N), N). % a) base case
arithmetic_value(E+F, Value) :- % bl) recursive case
arithmetic_value(E,Eval),
arithmetic_value(F,Fval),
Value is Eval + Fval.

Cases and Structural Induction 9

arithmetic_value(-F, Value) :- % b2) recursive case
arithmetic_value(F,Fval),
Value is -Fval.

arithmetic_value(E-F, Value) :- % b3) recursive case
arithmetic_value(E,Eval),
arithmetic_value(F,Fval),
Value is Eval - Fval.

arithmetic_value(ExF, Value) :- % b4) recursive case
arithmetic_value(E,Eval),
arithmetic_value(F,Fval),
Value is Eval * Fval.

arithmetic_value(E/F, Value) :- % bb) recursive case
arithmetic_value(E,Eval),
arithmetic_value(F,Fval),
Value is Eval / Fval.

Cases and Structural Induction 10

Why is this called structural induction?

e induction: defined recursively

e structural: recursion controlled by structure, not contents

Two things to watch out for:
® missing cases
e duplicate cases

An example for intentional duplicate cases:

member (X, [X|_1).
member (X, [_IL]) :-
member (X,L) .

Inputs and Outputs 11

A closer look at arguments: Inputs and Outputs

In principle, any argument (or part of it) can be input or output:
birthday (byron, date(feb,4)).

birthday(noelene, date(dec,25)).

birthday(richard, date(oct,11)).

birthday(clare, date(sep,15)).

?- birthday(byron,Date) .

?- birthday(Person, date(feb,4)).

?- birthday(Person, date(feb,Day)).

Inputs and Outputs 12




Predicates solving for particular arguments only

Built-in predicates involving arithmetic expressions

e Expression must be ground in evaluation of Answer is Expression
(expression has one value, but same value for infinitely many expressions)

e Both arguments must be ground in comparisons: E<F, E>F, E>=F, . . .
Predicates using these built-ins have specific inputs and outputs:

factorial(0,1).
factorial (N,N_Factorial) :-
N> o0,
M is N-1,
factorial(M, M_Factorial),
N_Factorial is M_Factorialx*N.

Recursive predicates often require particular arguments to terminate.

Inputs and Outputs 13

Multiple output arguments

no output argument (true/false)

greater_than(X,Y) :- X < Y.

one output argument: min

min(X, Y, X) :- X < Y.

min(X, Y, Y) :- X >= Y.

two output arguments: min, max

min_and_max(X, Y, X, Y) :- X < Y.
X

min_and_max(X, Y, Y, X) :-

Inputs and Outputs

Order of arguments

Why a uniform ordering?

e clarity: consistency makes programs easier to understand

o efficiency: first argument indexing

Suggested ordering
e General rule: strict inputs < inputs-or-outputs < strict outputs
e Among strict inputs: templates < meta-arguments < streams <

selectors/indices < collections < other strict inputs

Inputs and Outputs 15

Templates and meta-arguments

Template:

e Pattern for making/selecting things.
e Example: first argument of findall/3

?- findall(Month-Day, birthday(_Name,date(Month,Day)), Bag).

Bag = [feb-4,dec-25,oct-11,sep-15]

Meta-Argument:

e Term which stands for a goal.

e Example: argument of call/1 or second argument of findall/3

Inputs and Outputs




Streams

e Terms representing open files
e Example: third argument of open/3

file_write :-
open(myfile,write,MyStream), % modes: read/write/append
write(MyStream, ’output to file’),
write(’output to screen (standard output)’),
close(MyStream) .

% simple case not using explicit streams
simple_file_write :-

tell(myfile),

write(’output to file’),

told.

Inputs and Outputs 17

Selectors/Indices and Collections

Selectors/Indices:

e Terms which function like array subscripts.
e Example: first argument of arg/3

?7- arg(3,p(a(n,o0),b,c(m),d),X).
X = c(m)

?- functor(p(a(n,o0),b,c(m),d) ,Functor,Arity).
Arity = 4, Functor = p

Collections:

e essentially every compound term can be used as a collection
e Example: second argument of arg/3

Inputs and Outputs 18

Other ordering guidelines

e sequence order: keep abstract sequences together (difference lists,
accumulator pairs. . . )

e code/data consistency: e.g., Head < Tail since [Head|Taill]

e function direction: most general input first
Example: Term =.. List
(every Term corresponds to a List, but not vice versa)

?7- p(a(n,o0),b,c(m),d) =.. List.
X = [p,a(n,0),b,c(m),d]

?- Term =.. [1,a(n,o0),b,c(m),d].
{TYPE ERROR: _169=..[1,a(n,0),b,c(m),d] -
arg 2: expected atom, found 13}

Inputs and Outputs 19

The scope of variables

e There are no non-local variables in Prolog.

e Non-local variables are encoded as extra arguments of a predicate which
are passed unchanged into the recursion.

% scale(SmallList,Multiplier,BigList)
% True if each element of SmallList multiplied by Multiplier
% is equal to the corresponding element of BigList.

scale([], _, [1).

scale([X|Xs], Multiplier, [Y|Ys]) :-
Y is X*Multiplier,
scale(Xs, Multiplier, Ys).

Context Arguments: global variables as context 20




% big_elements(FullList,SubList)
% True if SubList is the list of those elements of
% FullList which are bigger than 10, preserving order.

big_elements(Input,Output) :-
big_elements(Input, 10, Output).

big_elements([1, _, [1).
big_elements([Nbr|Nbrs], Bound, Bigs) :-

Nbr < Bound,

big_elements(Nbrs, Bound, Bigs).
big_elements ([Nbr|Nbrs], Bound, [Nbr|Bigs]) :-

Nbr >= Bound,

big_elements(Nbrs, Bound, Bigs).

Context Arguments: global variables as context 21

Packaging contexts

context(conx(A,B,C,D),A,B,C,D).

context_a(conx(A,_,_,_),A).
context_b(conx(_,B,_,_),B).
context_c(conx(_,_,C,_),C).
context_d(conx(_,_,_,D),D).

c(...) :-
init(...,A,B,C,D,...),
context (Context,A,B,C,D),
p(...,Context,...),

Context Arguments: global variables as context 22

p(...,Context,...) :-

context_a(Context,A),
use_a(A),

p(...,Context,...).
p(...,Context,...) :-—

context_b(Context,B),
use_b(B),

p(C...,Context,...).

Context Arguments: global variables as context 23

Accumulator passing

e There is no changing of variable values in Prolog.

e Two variables are used to store old and new value (accumulator passing).

len(List,Length) :-
len(List, 0, Length).

len([], N, N).
len([_|L], NO, N) :-
N1 is NO+1,

len(L, N1, N).

Context Arguments: changing values as accumulator passing 24




rev(List, Reverse) :-
rev(List, [], Reverse).

rev([], Reverse, Reverse).

rev([Head|Tail], Reverse0O, Reverse) :-
rev(Tail, [Head|ReverseO], Reverse).

Context Arguments: changing values as accumulator passing

25

Multiple accumulator pairs
One changed in each recursion

sum_pos_neg(List, Pos, Neg) :-
sum_pos_neg(List, 0, Pos, 0, Neg).

sum_pos_neg([], Pos, Pos, Neg, Neg).
sum_pos_neg([X|Xs], PosO, Pos, NegO, Neg) :-

X >= 0,

Posl is PosO+X,

sum_pos_neg(Xs, Posl, Pos, NegO, Neg).
sum_pos_neg([X|Xs], PosO, Pos, NegO, Neg) :-

X <0,

Negl is NegO+X,

sum_pos_neg(Xs, PosO, Pos, Negl, Neg).

Context Arguments: changing values as accumulator passing 26

Multiple accumulator pairs
Multiple changed in each recursion

sum_and_ssq(List, Sum, SSQ) :-
sum_and_ssq(List, 0, Sum, 0, SSQ).

sum_and_ssq([], Sum, Sum, SSQ, SSQ).
sum_and_ssq([X|Xs], SumO, Sum, SSQO, SSQ) :-
Suml is SumO + X,
SSQ1 is SSQO+X,
sum_and_ssq(Xs, Suml, Sum, SSQ1, SSQ).

Context Arguments: changing values as accumulator passing

27

Last call optimization/Tail-recursion optimization

e Issue: Before execution can enter a recursive call, it has to save the
state of all variables.

e Idea: A recursive call as last goal in the body of a deterministic predicate
can be turned into a jump.

e Advantage: A jump does not require saving the state of the variables
before entering the recursion.

Context Arguments: last call optimization 28




An example for ordinary recursion

slow_len([],0).

slow_len([_|Taill ,N) :-
slow_len(Tail,M),
N is M+1.

How does the query slow_len([a,b,c], X) work?
1 Call: slow_len([a,b,c], X)

e Prolog tries to match it against slow_len([],0), which fails.

e Prolog tries to match it against slow_len([_|Taily], Ny), which
succeeds, binding Tail;=[b,c], N;=X.

e A stack frame is created, holding Ny and M;.

e Prolog now has the goal slow_len([b,c], M;).
29

2 Call: slow_len([b,c], M;)

e Prolog tries to match it against slow_len([], 0), which fails.

e Prolog tries to match it against slow_len([_|Tails], Ny), which
succeeds, binding Tails=[c], No=M;.

e A stack frame is created, holding Ny and M.

e Prolog now has the goal slow_len([c], My ).
3 Call: slow_len([c], M )

e Prolog tries to match it against slow_len([], 0), which fails.

e Prolog tries to match it against slow_len([_|Tails], N3), which
succeeds, binding Tails=[], N3=M,.

e A stack frame is created, holding N3 and M3

e Prolog now has the goal slow_len([],M3) .
30

4 Call: slow_len([], M3 )

e Prolog tries to match it against slow_len([], 0), which succeeds,
binding M3=0.

3 Exit:

e Prolog returns to the third frame, and executes the goal N3 is M3+1,
which succeeds, binding N3=1.

e The third stack frame is now released.

2 Exit:

e Prolog returns to the second frame, and executes the goal Ny is My+1, which
succeeds, binding Ny=2.

e The second stack frame is now released.

31

1 Exit:

e Prolog returns to the first frame, and executes the goal N; is M;+1,
which succeeds, binding N;=3, which binds X=3.

e The first stack frame is now released.

32




A tail-recursion example using the optimization

len(List,Length) :-
len(List, 0, Length).

len([1, N, N).
len([_|L], NO, N) :-
N1 is NO+1,

len(L, N1, N).

How does the query len([a,b,c], X) work?

0 Call: len([a,b,c]l, X)
Prolog tries to match it against len(List, Length), which succeeds,
binding List=[a,b,c], Length=X.

la Jump: len([a,b,c], 0, X)

The clause 1len([_|L, NO, N) is selected, binding L=[b,c], NO=0, N=X.
33

Ib Jump: N1 is NO+1
The goal N1 is NO+1 is executed, binding N1=1.

2a Jump: len([b,c], 1, X)
The clause 1len([_|L], NO, N) is selected, binding L=[c], NO=1, N=X.

2b Jump: N1 is NO+1
Execution of the builtin goal binds N1=2.

3a Jump: len([c], 2, X)
The clause 1len([_|L], NO, N) is selected, which binds L=[], NO=2, N=X.

3b Jump: N1 is NO+1
Execution of the builtin goal binds N1=3.

4 Jump: len([], 3, X)
The clause 1len([], N, N) is selected, which binds X=3.

34

Partial Data Structures

An instance i of a recursively defined data type ¢ is referred to as

e proper if ¢ is not a variable and each of its argument of type ¢ is proper

e partial or incomplete otherwise.

Examples:

e proper lists: [1, [_,_,_]

e partial lists: X, [al_], [alRest]

Context Arguments: partial data structures 35

Classifying lists (an example for an accumulator pair)

is_proper_list(Term) :-
classify_list(Term, proper, proper).

is_partial_list(Term) :-
classify_list(Term, proper, partial).

is_a_list(Term) :-
classify_list(Term, partial, partial).

classify_list(V, _, X) :- var(V), !, X=partial.
classify_list([],X,X).
classify_1list([_|T],X0,X) :-

classify_list(T, X0, X).

Context Arguments: partial data structures 36




Why use partial data structures?

Partial data structures allow building results top-down:

append([], L, L).
append([H|T], L, [HIR]) :-
append(T,L,R) .

a bottom-up version (requires first argument is input):

append([], L, L).

append([HIT], L, X) :-
append(T,L,R),
X=[HIR].

Context Arguments: partial data structures

37

?7- append([1,2],[3,4],X). % using "top-down" definition

1 1 Call: append([1,2],[3,4],_274) 7

2 2 Call: append([2],[3,4]1,_773) 7 g
Ancestors:

1 1 Call: append([1,2],[3,4],[1]1_773])

2 2 Call: append([2],[3,4],_773) 7

3 3 Call: append([],[3,4],.1938) 7 g
Ancestors:

1 1 Call: append([1,2],[3,4],[1,2/_1938])

2 2 Call: append([2],(3,4],[2]_1938])

3 3 Call: append([],[3,4],_1938) 7

3 3 Exit: append([],[3,4]1,[3,4]1) 7

2 2 Exit: append([2],[3,4],[2,3,4]) 7

1 1 Exit: append([1,2],[3,4],[1,2,3,4]) 7

Context Arguments: partial data structures 38

Walking through a tree vs. Unifying-in a pattern

path_data([]l, Tree, Datum) :-
b_access(d, Tree, Datum).

path_data([Arc|Arcs], Tree, Datum) :-
b_access(Arc, Tree, Dtr),
path_data(Arcs, Dtr, Datum).

b_access(1, b(Lson,_,_), Lson).
b_access(2, b(_,Rson,_), Rson).
b_access(d, b(_,_,Datum), Datum).

dynamic_pattern(Path, Tree, Datum) :-
path_data(Path, Pattern, Datum),
Tree = Pattern.

Context Arguments: partial data structures

39

Difference lists
e Idea: Carry around a partial data structure plus a reference to the holes
in it.
e Advantage: The partial data structure can be extended by filling a hole
with a (partial) data structure.
Example:

s(Phon0O, Phon2) :-
np(Phon0, Phonl),
vp(Phonl, Phon2).

np([john|Hole] ,Hole).
np([laughs|Hole],Hole) .

Difference Lists 40




Counters: bottom-up

bup_ground(Term) :-
nonvar (Term) ,
functor(Term, _, Arity),
bup_ground(Arity, Term).

bup_ground(0,_) :- !. % no more elements to process
bup_ground(N, Term) :-
arg(N, Term, Arg), % identify argument N
bup_ground(Arg), 7% check argument N
M is N-1,
bup_ground(M, Term).

Counters 41

Counters: bottom-up (if-then-else version)

bup_ground2(Term) :-
nonvar (Term) ,
functor(Term, _, Arity),
bup_ground2 (Arity, Term).

bup_ground2 (N, Term) :-
(N = 0 -> Y% no more elements to process

true

arg(N, Term, Arg), % process N
bup_ground2(Arg),

M is N-1,

bup_ground2 (M, Term)).

Counters 42

Counters: top-down

td_ground(Term) :-—
nonvar (Term) ,
functor(Term, _, Arity),
td_ground(0, Arity, Term).

td_ground(N,N,_) :- !. % no more elements to process
td_ground(I, N, Term) :-
J is I+1,
arg(J, Term, Arg), Y identify argument J
td_ground (Arg) , % check argument J

td_ground(J,N,Term) .

Counters 43

Counters: top-down (if-then-else version)

td_ground2(Term) :-
nonvar (Term) ,
functor(Term, _, Arity),
td_ground2(0, Arity, Term).

td_ground2(I,N,Term) :-
(I<N-—>

J is I+1,

arg(J, Term, Arg),

td_ground2(Arg),

td_ground2(J,N,Term)

true % I = N, no more items to process

% process element J

Counters 44




Counters: bisection

bi_ground(Term) :-
nonvar (Term) ,
functor(Term, _, Arity),
bi_ground(1, Arity, Term).

bi_ground(L, U, Term) :-
L<u, !,
M is (L+U)//2,
N is M+1,
bi_ground(L, M, Term),
bi_ground(N, U, Term).
bi_ground(L, L, Term) :- !
arg(L, Term, Arg),
bi_ground(Arg) .
bi_ground(_, _, _). % L>U: no elements to process

>

Counters

45

Counters: bisection (if-then-else version)

bi_ground2(Term) :-
nonvar (Term) ,
functor(Term, _, Arity),
bi_ground2(1, Arity, Term).

bi_ground2(L, U, Term) :-

( LU ->
M is (L+U)//2,
N is M+1,
bi_ground2(L, M, Term),
bi_ground2(N, U, Term)

; (L>U -> true
; arg(L, Term, Arg), % L=U

bi_ground2(Arg)

Counters

46

Counting without numbers

num_twice_as_long(L1,L2) :-
length(L1,N1),
N2 is N1%2,
length(L2,N2).

twice_as_long([]1,[]1).
twice_as_long([_IL1],[_,_|L2]) :-
twice_as_long(L1,L2).

Counters

47

Backwards Correctness

Check each clause for:

e When does it make sense to try this clause?

e Does the program ensure that Prolog knows when it doesn’t make sense?

Backwards Correctness

48




Backwards Correctness: A problem case

wrong_count_atom_arguments(Term, Count) :-
nonvar (Term) ,
functor(Term, _, Arity),
wrong_count_atom_arguments (Arity, Term, O, Count).

wrong_count_atom_arguments (0, _, Count, Count).
wrong_count_atom_arguments (N, Term, CountO, Count) :-

arg(N, Term, Arg),

atom(Arg),

Countl is CountO+1,

M is N-1,

wrong_count_atom_arguments(M, Term, Countl, Count).
wrong_count_atom_arguments (N, Term, CountO, Count) :-

M is N-1,

wrong_count_atom_arguments(M, Term, CountO, Count).

Backwards Correctness: An example 49

Backwards Correctness: Problem case eliminated

count_atom_arguments(Term, Count) :-
nonvar (Term) ,
functor(Term, _, Arity),
count_atom_arguments (Arity, Term, O, Count).

count_atom_arguments(0, _, Count, Count).
count_atom_arguments(N, Term, CountO, Count) :-
arg(N, Term, Arg),
( atom(Arg) -> Increment = 1 % Arg is atom

; Increment = 0 7% Arg is non-atom
),

Countl is CountO+Increment,

M is N-1,

count_atom_arguments(M, Term, Countl, Count).

Backwards Correctness: An example

50

Eliminating one more choice point

fast_count_atom_arguments(Term, Count) :-
nonvar (Term) ,
functor(Term, _, Arity),
fast_count_atom_arguments(Arity, Term, O, Count).

fast_count_atom_arguments(N, Term, CountO, Count) :-

( N=:=0 -> Count is CountO % no more arguments

; arg(N, Term, Arg),
( atom(Arg) -> Increment = 1 % Arg is atom
; Increment 0 % Arg is non-atom
),
Countl is CountO+Increment,
M is N-1,
fast_count_atom_arguments(M, Term, Countl, Count)

).

Backwards Correctness: An example 51

Unavoidable problems

append([], L, L).
append([HIT], L, [HIR]) :-
append(T,L,R) .

| ?- append(X,[]1,X).

X=10r7;

X = [_A] 7

X [_LA,_B] 7 ;

X = [_A,_B,_C] 7 ;

Since solution space is infinite, only possibility is to add comment:
% append/3: first or third argument must be proper lists

Backwards Correctness: Unavoidable problems

52




Comments on practical matters

e Thoroughly read each chapter, also when not presenting.
e Try out the example code.

e Make slides & handouts for when you present and send them to me
before Monday morning for comments and inclusion on course page.

e Intermediate results of projects are presented in last class, final results
will normally be presented in the next quarter’'s Clippers

Backwards Correctness: Unavoidable problems 53

Various loose ends

e Both Sicstus and SWI Prolog use last-call optimization

e Have people tried the debuggers? (Sicstus in Emacs and graphical SWI,
including editing)

e Lexical scoping of variables: Assuming a procedure P declared as part
of a procedure Q, the variables visible in P are those declared in P plus
those declared in Q.

Backwards Correctness: Unavoidable problems 54




