On the use of complex data structures

e What do non-atomic data structures represent?
e Combining non-atomic data structures

e Term unification

e Representing feature structures

e Feature structure unification

What do non-atomic data structures represent?

s —-—> np(Per,Num), vp(Per,Num).

The rule represents a set of ground instances, one for each
possible substitution of a variable with a value.

--> np(first,sing), vp(first,sing).
--> np(second,sing), vp(second,sing).
—--> np(third,sing), vp(third,sing).
-=> np(first,plur), vp(first,plur).
--> np(second,plur), vp(second,plur).

n n n n n n

--> np(third,plur), vp(third,plur).

Combining compound terms

s -—> np(Per,Num), vp(Per,Num).

np(third,sing) --> [he].
np(third,plur) --> [they].

vp(third,sing) --> [walks].
vp(third,plur) --> [walk].

Two possible substitutions:
third/Per, sing/Num or third/Per, plur/Num

Most general unifiers

termUnify (£ (X,h(Y,e),g(d(2),e)),
£(Y,h(d(Z),e),g(Y,e))).

Which substitution should one report?

e d(a)/X ord(a)/X
e d(b)/X or d(b) /X
e d(h(a,b))/X and d(h(a,b)) /X

Pick the most general unifier (mgu):

e d(Z)/X and d(Z) /X

Infinite trees

e \What happens when one unifies

— £ (X) with X 7
— f(a,g(X,b)) with X ?

e Add an occurs check to test whether the variable occurs in
the term.

e In practice too costly.

Term unification

e A variable unifies with any term it does not occur in.

e An atom (functor or constant) unifies only with an identical
atom.

e Compound terms unify if their functors are identical and their

arguments unify pairwise, and the substitutions obtained as
a result of each of these unifications are compatible.

Explicit term unification in Prolog

termUnify(X,Y) :-
var(X),!,
X =Y.

termUnify(X,Y) :-
var(Y),!,
X =Y.

termUnify(X,Y) :-
X =.. [XFunctor|XArgs],
Y =.. [YFunctor|YArgs],
XFunctor=YFunctor,
unifyArgs (XArgs,YArgs) .

unifyArgs([],[]).

unifyArgs ([X|Xs], [YIYs]) :-
termUnify(X,Y),
unifyArgs(Xs,Ys).

Representing feature structures in Prolog

Feature names and atomic values represented by Prolog
atoms

The operator “:" is defined to separate feature:value
7- op(500,xfy,:).

Prolog variables encode structure sharing.
Feature structures represented as Prolog lists with open tails:

— [person:third, num:sing]_]
— [person:X, num:sing, head:subj:person:X|_]

Unifying feature structures in Prolog

unify(Dag,Dag) :- !.

unify([Path:Val | Restl], Dag) :-
pathval (Dag,Path,Val,Rest2),
unify(Rest1,Rest2)

pathval ([Feat:Vall | Rest], Feat, Val2, Rest) :-
I, unify(Vall,Val2).

pathval([Dag | Rest], Feat, Val, [Dag | Rest2]) :-
pathval (Rest,Feat,Val,Rest2).

10

Towards grammar rules in PATR

rule(S, [NP,VP]) :-
pathval(S,cat,s,_),
pathval (NP,cat,np,_),
pathval (VP,cat,vp,_),
pathval (NP,per,X,_),
pathval (VP,per,X,_),
_)
_)

pathval (NP,num,Y,
pathval (VP,num,Y,

b

11

Grammar rules in PATR

7- op(500,xfy,:).

7- op(500,xfx,——-->).

7- op(600,xfy,===).

S -—-> [NP,VP]) :-

S:cat

NP:cat
VP:cat
NP :per
VP :per
NP :num
VP :num

=== S

12

Assigning a general meaning to

X === ¢ -
denotes(X,Z),
denotes(Y,Z).

denotes(Var,Var) :-
var (Var),!.

denotes (Atom,Atom) :-
atomic(Atom),!.

13

denotes(Dag:Path,Value) :-
pathval (Dag,Path,Value).

pathval (Dagl,Feature:Path,Value,Dags)
I ,pathval (Dagl,Feature,Dag2,Dags) .
pathval (Dag2,Path,Value).

14

Two notes on ALE

e Testing for unifiability: mgsat/1

e Stepwise addition of edges to chart: interp/0

15

