
Chart parsing with non-atomic categories

Three options for chart parsing with grammars employing non-

atomic categories:

1. Expand the grammar into a CFG with atomic categories

2. Parse using an atomic CFG backbone with reduced

information

3. Incorporate special mechanisms into the parser

1



Idea 1: Expand the grammar into a CFG with
atomic categories

• number of categories grows exponentially, e.g., 3n is size of

category set with n binary features (plus, minus, unspecified)

• leads to a potentially huge set of rules

• grammar size relevant for time and space efficiency of parsing

2



Idea 2: Parse using an atomic CFG backbone
with reduced information

• idea:

– parse using a property defined for all categories

– use other properties to filter solutions from set of parses

• downside:

– parsing with partial information can significantly enlarge

the search space

3



Idea 3: Incorporate special mechanism into parser

• The equality check used for atomic categories has to be

replaced by unification.

• Every active and inactive edge in a chart may be used for

different uses. So for each time an edge is used, a new copy
needs to be made.

• Revise the duplication check: only add an edge if it is not

subsumed by an edge already in the chart.

4



• Two efficiency issues:

– intelligent indexing of edges in chart

– packing of similar edges in chart (cf. Tomita parser)

5



Earley parser with atomic categories

Prediction: for each i[A → α •j B β] in chart

for each B → γ in rules

add j[B → •j γ] to chart

Scanning: let w1 . . . wj . . . wn be the input string

for each i[A → α •j−1 wj β] in chart

add i[A → α wj •j β] to chart

Completion (fundamental rule of chart parsing):

for each i[A → α •k B β] and k[B → γ •j ] in chart

add i[A → α B •j β] to chart
6



Earley parser with unification

Prediction:
for each i[A → α •j B β] in chart

for each B′ → γ in rules

add j[σ(B → •j γ)] with σ = mgu(B,B′) to chart

Completion (fundamental rule of chart parsing):

for each i[A → α •k B β] and k[B
′ → γ •j ] in chart

add i[σ(A → α B •j β)] with σ = mgu(B,B′) to chart

7



Using restriction to prevent prediction loops

• Prediction terminates for grammars with atomic categories,

since a new item is only added to the chart if not already

there and there is a finite number of atomic categories.

• Moving beyond atomic categories, there can be an infinite

number of non-atomic categories.

• Prediction loop on left-recursive rules can be problem again.

• Solution: use restriction on prediction substitution to limit

to finite number of cases

8



An example for a problematic grammar

Shieber/Shabes/Pereira (1994, p. 13): Grammar accepting abn

with N being instantiated to the successor representation of n.

start → r(0, N)

r(X,N) → r(s(X), N) b

r(N,N) → a

Prediction step with unification will loop:

0[start → •0 r(0, N)]

0[r(0, N) → •0 r(s(0), N) b]

0[r(s(0), N) → •0 r(s(s(0)), N) b]

0[r(s(s(0)), N) → •0 r(s(s(s(0))), N) b]

· · · 9



Prediction with restriction

for each i[A → α •j B β] in chart

for each B′ → γ in rules

add j[σ(B → •j γ)] with σ = restriction(mgu(B,B′)) to chart

− restriction(mgu(B,B′)) can be any operation reducing the

number of possible substitutions to finite classes:

(a) depth bound on term complexity

(b) elimination of terms that are known to grow indefinitely

(c) use only of selected terms known not to grow indefinitely

− sound since predicted edge only step towards completion!
10


