Finite state machines and
regular languages

e Notations:

e Regular expressions
e Finite state transition networks
e Finite state transition tables

e Finite state machines and regular languages

e Definitions
e Some properties

e Finite state transducers

Regular expressions

A regular expression (RE) is a description of a set of
strings, a language.

e can be used to search for occurrences of these
strings

e used in a variety of tools: grep, editors, corpus
search tools (cqp), . . .

e Just like any other formalism, REs have no linguistic
contents as such. But they can well be used to refer
to units of morphological or phonological relevance.

Some linguistically informed uses

Determine the language of the following utterance:
French or Polish?

Czy pasazer jadacy do Warszawy moze
jechac przez Londyn?

= Knowledge of morphologically/phonologically
possible sequences of letters can be used for this
task.

Look up the following words in the dictionary:
laughs, became, unidentifiable, Thatcherization

= Knowledge of morphological composition needed.

Basic regular expressions (1)

Regular expressions consist of

e strings of characters (case sensitive!):
c, natural language, 100 years!

e disjunction:

e ordinary disjunction: |
devoured|ate, famil(y|ies)
e character classes:
[Tt]lhe, becl[oa]lme
® ranges:
[A-Z] for a capital letters

e negation: ~ as first letter after [
["a] any symbol but a
["A-Z] not an uppercase letter

Basic regular expressions (2)

® counters

e optionality: 7
colou”r

e any number of occurrences: * (Kleene star)
[0-9]* years

e at least one occurrence: +
$ [0-9]+

e wildcard for any character: .
beg.n for any character in between beg and n

Operator precedence, from highest to lowest:

parenthesis ()
counters *x + 7
character sequences

disjunction |

Regular languages

How can the class of regular languages which is
specified by regular expressions be characterized?

Let > be the set of all symbols of the language (the
alphabet), then:

1. {} is a regular language
2. Ya € 3: {a} is a regular language

3. If Ly and Ls are regular languages, so are:

(a) the concatenation of L; and Ly:
L1 . L2 = {xy\a: c Ll,y < L2}

(b) the union (or disjunction) of L; and Ls:
LU Ly

(c) the Kleene closure of Lj:
L;

Finite state machines

Finite state machines (FSM), also called finite
state automata (FSA) can recognize or generate
regular languages, such as those specified by regular

expressions.

Example:

e Regular expression: colou?r

e Finite state machine:

O

G ur

Finite state automaton

A finite state automaton is a quintuple
(Q,3, E, S, F) with

e () a finite set of states

e X a finite set of symbols, the alphabet
e S C () the set of start states

o F' C () the set of final states

e [V asetofedges @ x (XU{e}) xQ

A transition function d can be defined as

d(q,a) = {¢' € Q|3(q,a,q') € E}

Language accepted by an FSA

Auxiliary concept: The extended set of edges E C
R X X* X () is the smallest set such that

A

e V(q,0,¢) e E: (q,0,¢)€E

AN AN

® v(Q07017Q1)7 (Q17027(]2) c E (Q0,0'lO'Q,QQ) - E

The language L(A) of a finite state automaton A
is defined as

A

L(A) = {w|qs € S,q; € F, (qs,w, q) € E}

Finite state transition networks

Finite state transition networks are graphical
descriptions of finite state machines:

e nodes represent the states

e start states are marked with a short arrow
e final states are indicated by a double circle

e arcs represent the transitions

Simple example:

Regular expression specifying the language generated
or accepted by the corresponding FSM: ab|cb+

10

Finite state transition tables

Finite state transition tables are an alternative, textual
way of describing finite state machines:

e the rows represent the states

e start states are marked with a dot after their
name
e final states with a colon

e the columns represent the alphabet

e the fields in the table encode the transitions

Our simple example:

a b C d
SO. S1 S2
S S3:
S2 S2,53:

S3:

11

Properties of regular languages

Let L1 and Lo be regular languages.

The regular languages are closed under

concatenation: Lq - Lo
set of strings with beginning in L1 and continuation

In L2

Kleene closure: L7
set of repeated concatenation of a string in L

union: L1 U Lo
set of strings in Ly or in Lo

complementation: X* — L
set of all possible strings that are not in Ly

difference: L1 — Lo
set of strings which are in L; but not in Ly

Intersection: L1 N Lo
set of strings in both Ly and Ls

reversal: L1t
set of the reversal of all strings in L

12

Further properties

e Recognition problem can be solved in linear time

e There is an algorithm to transform each automaton
into a unique equivalent automaton with the least
number of states.

13

Deterministic Finite State Automata

A finite state automaton is deterministic iff it has

® no € transitions and

e for each state and each symbol there is at most one
applicable transition.

Every non-deterministic automaton can be transformed
into a deterministic one:

e Define new states representing a disjunction of old
states for each non-determinacy which arises.

e Define arcs for these states corresponding to each
transition which is defined in the non-deterministic
automaton for one of the disjuncts in the new state
names.

14

Example: Determinization of FSA

15

From Automata to Transducers

Needed: mechanism to keep track of path taken

A finite state transducer is a 6-tuple
(Q,>1,%9, B, S, F') with

e () a finite set of states

e >, a finite set of symbols, the input alphabet
e Y5 a finite set of symbols, the output alphabet
e S C () the set of start states

e [C () the set of final states

e [asetof edges Q x (X1 U{e}) x Q x (22U {e})

16

Transducers and determinization

A finite state transducer understood as consuming an

input and producing an output cannot generally be
determinized.

Example:

17

Reading assignment

e Chapter 1 “Finite State Techniques’ of course notes

e Chapter 2 “Regular expressions and automata” of
Jurafsky and Martin (2000)

18

