
More on implementing finite state

machines in PROLOG

• Recursive relations in PROLOG:

• data structures needed
• two example relations

• Completing the FSM recognition and generation
algorithms to use

• ε transitions
• abbreviations

1

Recursive relations in PROLOG
Compound terms as data structures

To define recursive relations, one needs a richer data
structure than the constants (atoms) introduced so far:
compound terms.

A compound term comprises a functor and a sequence
of one or more terms, the argument.1 Compound terms
are standardly written in prefix notation.2

For example:

• bin tree(mother, l-dtr, r-dtr)

• bin tree(s, np, bin tree(vp,v,n))

1An atom can be thought of as a functor with arity 0.
2Infix and postfix operators can also be defined, but need to be declared.

2

Recursive relations in PROLOG
Lists as special compound terms

Lists are represented as compound terms.

• symbol ”.” as binary functor

• first argument: first element of list

• second argument: rest of list

• empty list: represented by the atom ”[]”

Example: .(a, .(b, .(c, .(d,[]))))

Abbreviatory syntax available:

• bracket notation: [element1 | restlist]

Example: [a | [b | [c | [d | []]]]]

• element separator: [element1 , element2]
= [element1 | [element2 | []]]

Example: [a, b, c, d]

3

Four equivalent representations for lists:

1. [a,b,c,d]

2. [a | [b | [c | [d | []]]]]

3. .(a, .(b, .(c, .(d,[]))))

4.
a

b

c

d []

.

.

.

.

4

Recursive relations in PROLOG
Example relations I: append

• Idea: a relation concatenating two lists

• Example:
?- append([a,b,c],[d,e],X).
⇒ X=[a,b,c,d,e]

append([],L,L).
append([H|T],L,[H|R]) :-

append(T,L,R).

5

Recursive relations in PROLOG
Example relations II: reverse

• Idea: reverse a list

• Example: ?- reverse([a,b,c],X).⇒ X=[c,b,a]

1. naive reverse:

naive_reverse([],[]).
naive_reverse([H|T],Result) :-

naive_reverse(T,Aux),
append(Aux,[H],Result).

2. reverse:

reverse(A,B) :-
reverse_aux(A,[],B).

reverse_aux([],L,L).
reverse_aux([H|T],L,Result) :-

reverse_aux(T,[H|L],Result).

6

Negation in PROLOG

• PROLOG does not have the means to express
not(P) in the sense that P is known to be false.

• Instead, PROLOG has so-called negation by failure.
Negating a goal P in PROLOG means that the
system will try to prove P and if that fails, not(P)
will be true.

• As notation for negation, the unary operator \+ is
used. To use the functor not instead, one can
simply define: not(X) :- \+(X).

7

FSMs with ε transitions and abbreviations
Defining PROLOG representations

1. Decide on a symbol to use to mark ε transitions:
’#’

2. Define abbreviations for labels:
macro(Label,Word).

3. Define a relation special/1 to recognize
abbreviations and epsilon transitions:

special(#).
special(X) :-

macro(X,_).

8

FSMs with ε transitions and abbreviations
Extending the recognition algorithm

test(Words) :-
initial(Node),
recognize(Node,Words).

recognize(Node,[]) :-
final(Node).

recognize(FromNode,String) :-
arc(FromNode,Label,ToNode),
traverse(Label,String,NewString),
recognize(ToNode,NewString).

traverse(Label,[Label|RestString],RestString) :-
not(special(Label)).

traverse(Abbrev,[Label|RestString],RestString) :-
macro(Abbrev,Label).

traverse(’#’,String,String).

special(#).
special(X) :-

macro(X,_).

not(X) :- \+(X).
9

