More on implementing finite state
machines in PROLOG

e Recursive relations in PROLOG:
e data structures needed
e two example relations
e Completing the FSM recognition and generation

algorithms to use

® ¢ transitions
e abbreviations

Recursive relations in PROLOG
Compound terms as data structures

To define recursive relations, one needs a richer data
structure than the constants (atoms) introduced so far:
compound terms.

A compound term comprises a functor and a sequence
of one or more terms, the argument.! Compound terms
are standardly written in prefix notation.?

For example:

e bin_tree(mother, 1-dtr, r-dtr)

e bin_tree(s, np, bin_tree(vp,v,n))

LAn atom can be thought of as a functor with arity 0.
2Infix and postfix operators can also be defined, but need to be declared.

Recursive relations in PROLOG
Lists as special compound terms

Lists are represented as compound terms.

1 1

e symbol "." as binary functor
e first argument: first element of list
e second argument: rest of list

e empty list: represented by the atom " [1"

Example: . (a, .(b, .(c, .(d,0[1))))

Abbreviatory syntax available:

e bracket notation: [elementl | restlist]
Example: [a | [b | [c | [d | [1]1]1]]

e clement separator: [elementl , element2]
— [elementl | [element2 | [1]]

Example: [a, b, c, dl]

Four equivalent representations for lists:

1. [a,b,c,d]
2. [a | [b| [c | [4 | [111]1]

3. .(a, .(b, .(c, .(d,[1))))

a .
.
b .
N
C .
N

Recursive relations in PROLOG
Example relations I: append

e |dea: a relation concatenating two lists

e Example:
7- append([la,b,c],[d,e] ,X).
= X=[a,b,C,d,e]

append([],L,L).
append ([H|T],L, [HIR]) :-
append(T,L,R) .

Recursive relations in PROLOG
Example relations Il: reverse

e ldea: reverse a list

e Example: 7- reverse([a,b,c],X). = X=[c,b,a]

1. naive reverse:

naive_reverse([],[]).

naive_reverse([H|T] ,Result) :-
naive_reverse(T,Aux),
append (Aux, [H] ,Result).

2. reverse:

reverse(A,B) :-
reverse_aux(A, [],B).

reverse_aux([],L,L).
reverse_aux([H|T],L,Result) :-
reverse_aux(T, [H|L] ,Result).

Negation in PROLOG

e PROLOG does not have the means to express
not (P) in the sense that P is known to be false.

e Instead, PROLOG has so-called negation by failure.
Negating a goal P in PROLOG means that the
system will try to prove P and if that fails, not(P)
will be true.

e As notation for negation, the unary operator \+ is
used. To use the functor not instead, one can
simply define: not (X) :- \+(X).

FSMs with ¢ transitions and abbreviations
Defining PROLOG representations

1. Decide on a symbol to use to mark € transitions:
J#)

2. Define abbreviations for labels:
macro (Label,Word) .

3. Define a relation special/l to recognize
abbreviations and epsilon transitions:

special (#) .
special (X) :-
macro(X,_).

FSMs with ¢ transitions and abbreviations
Extending the recognition algorithm

test(Words) :-
initial (Node) ,
recognize (Node,Words) .

recognize (Node, [1) :-
final (Node) .

recognize (FromNode,String) :-
arc (FromNode,Label, ToNode),
traverse(Label,String,NewString),
recognize (ToNode,NewString) .

traverse(Label, [Label |RestString] ,RestString)

not (special(Label)).

traverse(Abbrev, [Label |RestString] ,RestString)

macro (Abbrev,Label) .
traverse(’#’,String,String) .

special (#).

special(X) :-
macro(X,_).

not (X) :—- \+(X).

