Towards more complex grammar systems
Some basic formal language theory

e Grammars, or: how to specify linguistic knowledge

e Automata, or: how to process with linguistic
knowledge

e Levels of complexity in grammars and automata:
The Chomsky hierarchy

Grammars

A grammar is a 4-tuple (IV, 3, S, P) where

e /N is a finite set of non-terminals

e X is a finite set of terminal symbols,
with NNX =0

e S is a distinguished start symbol, with S € N

e P is a finite set of rewrite rules of the form o« — (3,
with o, 6 € (N U X)* and « including at least one
non-terminal symbol.

A simple example

N = {S, NP, VP, V,, V;, V,)}

Y, = {John, Mary, laughs, loves, thinks}
S=S

(S — NP VP)

NP
NP

John
Mary

L

VP
VP
VP

V; >
Vi NP
Vs S

Ll

laughs
loves
thinks

<
L1

How does a grammar define a language?

Assume «, 3 € (N U X)*, with « containing at least
one non-terminal.

e A sentential form for a grammar G is defined as:

— The start symbol S of GG is a sentential form.
— If a3 is a sentential form and there is a rewrite
rule 3 — 6 then aé~ is a sentential form.

e « (directly or immediately) derives 3 if a — 5 € P.
One writes:

— o = *p if B is derived from « in zero or more
steps

— a = T3 if B is derived from « in one or more
steps

e A sentence is a sentential form consisting only of
terminal symbols.

e The language L(G) generated by the grammar G
Is the set of all sentences which can be derived from
the start symbol S, i.e., L(G) = {v|S = *~}

Processing with grammars: automata

An automaton in general has three components:

e an input tape, divided into squares with a read-
write head positioned over one of the squares

e an auxiliary memory characterized by two functions

— fetch: memory configuration — symbols
— store: memory configuration X symbol —
memory configuration

e and a finite-state control relating the two
components.

Different levels of complexity in grammars and automata

let ABEeEN,zeX, a,f,y€ (ZUT)%, and § € (X UT)+, then:

Type Automaton Grammar
Memory Name Rule Name
0 Unbounded | TM a— (3 General rewrite
1 Bounded LBA | B A~ — 36~ | Context-sensitive
2 Stack PDA A—(Context-free
3 None FSA | A —-zB, A — =z Right linear

Abbreviations:

— TM: Turing Machine

— LBA: Linear-Bounded Automaton
— PDA: Push-Down Automaton

— FSA: Finite-State Automaton

Type 3: Right-Linear Grammars and
Finite-State Automata

A right-linear grammar is a 4-tuple (IV, X, S, P) with

P a finite set of rewrite rules of the form o — (3, with
a € N and B € {y6|y € ¥x,6 € NU{e}}, i.e:

— left-hand side of rule: a single non-terminal, and

— right-hand side of rule: a string containing at most
one non-terminal, as the rightmost symbol

Right-linear grammars are formally equivalent to left-
linear grammars (at most one, leftmost non-terminal).

Finite-state transition network: states + arcs

A finite-state machine consists of
— a tape
— a finite-state control

— no auxiliary memory

A regular language example:
(ablc)ab * (a|cb)?

Finite-state transition network:
C a a

OGP a6
&)

Right-linear grammar:
N = {Expr, X, Y, Z}

Y, = {a,b,c}
S = Expr
(Expr — ab X)
Expr — ¢X
X — ayY
p=10Y — by \
Y — /
VA — a
/ — ¢b
\ Z — € J

Thinking about regular languages

A language is regular iff one can define a FSM (or
regular expression) for it.

An FSM only has a fixed amount of memory, namely
the number of states.

Strings longer than the number of states, in

particular also any infinite ones, must result from a
loop in the FSM.

Pumping Lemma: if for an infinite string there is
no such loop, the string cannot be part of a regular
language.

Type 2: Context-Free Grammars and
Push-Down Automata

A context-free grammar is a 4-tuple (N,X, S, P)
with

P a finite set of rewrite rules of the form o — (3, with
a€ N and € (XUN)x, ie.:

— left-hand side of rule: a single non-terminal, and

— right-hand side of rule: a string of terminals and/or
non-terminals

A push-down automaton is a

— finite state automaton, with a

— stack as auxiliary memory

10

A context-free language example: a™b"

Context-free grammar:

N = {S}
Y, = {a, b}
S=S

p_ { S — aShb }
S — €
Push-down automaton:

+ push z 5 + pop x

11

Type 1: Context-Sensitive Grammars
and Linear-Bounded Automata

A rule of a context-sensitive grammar
— rewrites at most one non-terminal from the left-hand
side.

— Contextual restrictions on the occurrence of this
non-terminal may be imposed.

— The non-terminal must not rewrite as the empty
string e.

A linear-bounded automaton is a

— finite state automaton, with an

— auxiliary memory which cannot exceed the length of
the input string.

12

A context-sensitive language example:
ab"c"

Context-sensitive grammar:

N =S, B, C}

Y, = {a, b}

S =S
(S ->aSBC,)
S —ab(,
bB — bb,

P=3bcobe |
cC —cc,
\CB—>BC

/

Type 0: General Rewrite Grammar and
Turing Machines

e In a general rewrite grammar there are no
restrictions on the form of a rewrite rule.

e A turing machine has an unbounded auxiliary
memory.

e Any language for which there is a recognition
procedure can be defined, but recognition problem
Is not decidable.

14

Properties of different language classes

Reasoning:

— Languages are defined to be sets of strings.

— One can therefore apply set operations to languages
and investigate results for particular language
classes.

Some closure properties:

— All language classes are closed under union with
themselves.

— All language classes are closed under intersection
with regular languages.

— The class of context-free languages is not closed
under intersection with itself. Proof:

Assume the two context-free languages L; and Ls:

— L= {a”b”ci\n >1and > O}
— Lo = {ajb"c”|n >1andj > O}

Their intersection is not context-free:

— Ly N Ly ={a™"c"n > 1}

15

Criteria under which to evaluate
grammar formalisms

There are three kinds of criteria:
— linguistic naturalness
— mathematical power

— computational effectiveness and efficiency

The weaker the type of grammar:
— the stronger the claim made about possible languages

— the greater the efficiency of the parsing procedure

Reasons for choosing a stronger grammar class:
— to capture the bare facts about actual languages

— to provide for elegant analyses capturing more
generalizations (— more “compact” grammars)

16

Language classes and natural languages
Natural languages are not regular

Example grammar:

S — If Sthen S
S — Either Sor S
S — | laugh|l have to sneeze|Tim screams

Example analyses:
— [If [I laugh] then [l have to sneeze]]

— [If [either [l laugh] or [l have to sneeze|| then [Tim
screams]]

A more abstract version of the grammar rules:

S — aSa$S
S — bSbS

S — €

which accepts a”b™b™a™ which is not a regular
language.

17

Accounting for bare facts vs.
linguistically sensible analyses

Looking at grammars from a linguistic perspective, one
can distinguish their

— weak generative capacity, considering only the
set of strings generated by a grammar

— strong generative capacity, considering the set of
strings and their syntactic analyses generated by a
grammar

Two grammars can be strongly or weakly equivalent.

18

Example for weakly equivalent grammars
Example string:
if b then if b then a else a p

Grammar 1 rules:
S — if b then S else S,

S — if b then S,
S—a
First analysis:
S
if b then S else S
if b then S a

19

Second analysis:

if b

Grammar 2 rules:

then S

A weekly equivalent grammar

eliminating the ambiguity (only licenses second

analysis).

(S1 — if b then S1,

S1 — if b then S2 else S1,
S1 — a,

S2 — if b then S2 else 52,

\52—>a

\

/

20

