
Parsers and criteria to evaluate them

• Function of a parser:

– grammar + string → analysis trees

• Main criteria for evaluating parsers:

– correctness

– completeness

– efficiency

2

Introduction to Parsing

• What is a parser?

• Under what criteria can they be evaluated?

• Parsing strategies

– top-down vs. bottom-up

– left-right vs. right-left

– depth-first vs. breadth-first

• Parsing strategy of Prolog executing DCGs

1

Completeness

A parser is complete iff for every grammar and for every string,

every correct analysis is found by the parser.

• In theory, always desirable.

• In practice, essential to find the ‘relevant’ analysis first

(possibly using heuristics).

• For grammars licensing an infinite number of analyses this

means: there is no analysis that the parser could not find.

4

Correctness

A parser is correct iff for every grammar and for every string,

every analysis returned by parser is an actual analysis.

Correctness is nearly always required (unless simple post-

processor could eliminate wrong analyses)

3



Complexity classes

If n is the length of the string to be parsed, one can distinguish

the following complexity classes:

• constant: the amount of work does not depend on n

• logarithmic: the amount of work behaves like logk(n), for

some constant k

6

Efficiency

• One can reason about complexity of (parsing) algorithms by

considering how it will deal with bigger and bigger examples.

• For practical purposes, the factors ignored by such analyses

are at least as important.

– profiling using typical examples important

– finding the (relevant) first parse vs. all parse

• Memoization of complete or partial results is essential to

obtain efficient parsing algorithms.

5

Complexity and the Chomsky hierarchy

Grammar type Worst-case complexity of recognition

regular (3) linear

context-free (2) cubic (n3)

context-sensitive (1) exponential

general rewrite (0) undecidable

Recognition with type 0 grammars is recursively enumerable:
if a string x is in the language, the recognition algorithm will

succeed, but it will not return if x is not in the language.

8

Complexity classes (cont.)

• polynomial: the amount of work behaves like nk, for some

constant k. This is sometimes subdivided into the cases

– linear (k = 1)

– quadratic (k = 2)

– cubic (k = 3)

– . . .

• exponential: the amount of work behaves like kn, for some

constant k.

7



Direction of processing: Top-down

Goal-driven processing is Top-down:

• Start with the start symbol

• Derive sentential forms.

• If the string is among the sentences derived this way, it is

part of the language.

10

Parsing strategies

1. What do we start from?

• top-down vs. bottom-up

2. In what order is the string or the RHS of a rule looked at?

• left-to-right, right-to-left, island-driven, . . .

3. How are alternatives explored?

• depth-first vs. breadth-first

9

The order of looking at substrings or a RHS

Left-to-Right

• Use the leftmost symbol first, continuing with the next to its

right

Problem for top-down, left-to-right processing: left-recursion

(e.g., N’ → N’ PP) leads to non-termination.

12

Direction of processing: Bottom-up

Data-driven processing is Bottom-up:

• Start with the sentence.

• For each substring σ of each sentential form ασβ, find each

grammar rule N → ω to obtain all sentential forms αNβ.

• If the start symbol is among the sentential forms obtained,

the sentence is part of the language.

Problem: Epsilon rules (N → ε).

11



How are alternatives explored? Breadth-first

• At every choice point: Pursue every alternative for one step

at a time.

• Requires massive bookkeeping since each alternative

computation needs to be remembered at the same time.

• Search is guaranteed to be complete.

14

How are alternatives explored? Depth-first

• At every choice point: Pursue a single alternative completely

before trying another alternative.

• State of affairs at the choice points needs to be remembered.

Choices can be discarded after unsuccessful exploration.

• Depth-first search is generally not complete.

13

Compiling and executing DCGs in Prolog

• DCGs are a grammar formalism supporting any kind of

parsing regime.

• The standard translation of DCGs to Prolog plus the proof

procedure of Prolog results in a parsing strategy which is

– top-down

– left-to-right

– depth-first

16

A small example

Mary

NP

saw

Vt

the

Det

dragon

N

NP

VP

S S → NP VP NP → Det N’

VP → Vi VP → Vt NP

Vt → saw Vi → left

Det → the Det → a

N’ → N N’ → N’ PP

N → dragon N → cave

PP → P NP PP → there

P → in P → at

NP → Mary NP → midnight

15


