
Parsers and criteria to evaluate them

• Function of a parser:

– grammar + string → analysis trees

• Main criteria for evaluating parsers:

– correctness
– completeness
– efficiency

3

Correctness

A parser is correct iff for every grammar and for every string, every analysis returned
by parser is an actual analysis.

Correctness is nearly always required (unless simple post-processor could eliminate
wrong analyses)

4

Introduction to Parsing

Detmar Meurers: Intro to Computational Linguistics I
OSU, LING 684.01, February 3., 2004

Overview

• What is a parser?

• Under what criteria can they be evaluated?

• Parsing strategies

– top-down vs. bottom-up
– left-right vs. right-left
– depth-first vs. breadth-first

• Implementing different types of parsers:

– Basic top-down and bottom-up
– More efficient algorithms

2

Complexity classes

If n is the length of the string to be parsed, one can distinguish the following complexity
classes:

• constant: amount of work does not depend on n

• logarithmic: amount of work behaves like logk(n) for some constant k

• polynomial: amount of work behaves like nk, for some constant k. This is
sometimes subdivided into the cases

– linear (k = 1)
– quadratic (k = 2)
– cubic (k = 3)
– . . .

• exponential: amount of work behaves like kn, for some constant k.

7

Complexity and the Chomsky hierarchy

Grammar type Worst-case complexity of recognition
regular (3) linear
context-free (2) cubic (n3)
context-sensitive (1) exponential
general rewrite (0) undecidable

Recognition with type 0 grammars is recursively enumerable: if a string x is in the
language, the recognition algorithm will succeed, but it will not return if x is not in
the language.

8

Completeness

A parser is complete iff for every grammar and for every string, every correct analysis
is found by the parser.

• In theory, always desirable.

• In practice, essential to find the ‘relevant’ analysis first (possibly using heuristics).

• For grammars licensing an infinite number of analyses this means: there is no
analysis that the parser could not find.

5

Efficiency

• One can reason about complexity of (parsing) algorithms by considering how it will
deal with bigger and bigger examples.

• For practical purposes, the factors ignored by such analyses are at least as important.

– profiling using typical examples important
– finding the (relevant) first parse vs. all parse

• Memoization of complete or partial results is essential to obtain efficient parsing
algorithms.

6

Direction of processing II: Bottom-up

Data-driven processing is Bottom-up:

• Start with the sentence.

• For each substring σ of each sentential form ασβ, find each grammar rule N → σ

to obtain all sentential forms αNβ.

• If the start symbol is among the sentential forms obtained, the sentence is part of
the language.

Problem: Epsilon rules (N → ǫ).

11

The order in which one looks at a RHS

Left-to-Right

• Use the leftmost symbol first, continuing with the next to its right

12

Parsing strategies

1. What do we start from?

• top-down vs. bottom-up

2. In what order is the string or the RHS of a rule looked at?

• left-to-right, right-to-left, island-driven, . . .

3. How are alternatives explored?

• depth-first vs. breadth-first

9

Direction of processing I: Top-down

Goal-driven processing is Top-down:

• Start with the start symbol

• Derive sentential forms.

• If the string is among the sentences derived this way, it is part of the language.

10

Compiling and executing DCGs in Prolog

• DCGs are a grammar formalism supporting any kind of parsing regime.

• The standard translation of DCGs to Prolog plus the proof procedure of Prolog
results in a parsing strategy which is

– top-down
– left-to-right
– depth-first

15

Implementing parsers

• Data structures: a parser configuration

• Top-down parsing

– formal characterization
– Prolog implementation

• Bottom-up parsing

– formal characterization
– Prolog implementation

• Towards more efficient parsers:

– Left-corner
– Remembering subresults

16

How are alternatives explored? I. Depth-first

• At every choice point: Pursue a single alternative completely before trying another
alternative.

• State of affairs at the choice points needs to be remembered. Choices can be
discarded after unsuccessful exploration.

• Depth-first search is not necessarily complete.

Problem for top-down, left-to-right, depth-first processing:

• left-recursion
For example, a rule like N’ → N’ PP leads to non-termination.

13

How are alternatives explored? II. Breadth-first

• At every choice point: Pursue every alternative for one step at a time.

• Requires serious bookkeeping since each alternative computation needs to be
remembered at the same time.

• Search is guaranteed to be complete.

14

Top-down parsing

• Start configuration for recognizing a string ω: < S, ω >

• Available actions:

– consume: remove an expected terminal a from the string
< aα, aτ > 7→ < α, τ >

– expand: apply a phrase structure rule
< Aβ, τ > 7→ < αβ, τ > if A → α ∈ P

• Success configuration: < ǫ, ǫ >

19

A top-down parser in Prolog (parser/simple/td parser.pl)

:- op(1100,xfx,’--->’).

% Start

td_parse(String) :- td_parse([s],String).

% Success

td_parse([],[]).

% Consume

td_parse([H|T],[H|R]) :-

td_parse(T,R).

% Expand

td_parse([A|Beta],String) :-

(A ---> Alpha),

append(Alpha,Beta,Stack),

td_parse(Stack,String). 20

An example grammar (parser/simple/grammar.pl)

% defining grammar rule operator

:- op(1100,xfx,’--->’).

% lexicon:

vt ---> [saw].

det ---> [the].

det ---> [a].

n ---> [dragon].

n ---> [boy].

adj ---> [young].

% syntactic rules:

s ---> [np, vp].

vp ---> [vt, np].

np ---> [det, n].

n ---> [adj, n].

17

A parser configuration

Assuming a left-to-right order of processing, a configuration of a parser can be
encoded by a pair of

• a stack as auxiliary memory

• the string remaining to be recognized

More formally, for a grammar G = (N, Σ, S, P), a parser configuration is a pair
< α, τ > with α ∈ (N ∪ Σ)∗ and τ ∈ Σ∗

18

< [vt, np], [saw, the, dragon] >

< [saw, np], [saw, the, dragon] >

< [np], [the, dragon] >

< [det, n], [the, dragon] >

< [the, n], [the, dragon] >

< [n], [dragon] >

< [dragon], [dragon] >

< [], [] >

23

Bottom-up parsing

• Start configuration for recognizing a string ω: < ǫ, ω >

• Available actions:

– shift: turn to the next terminal a of the string
< α, aτ > 7→ < αa, τ >

– reduce: apply a phrase structure rule
< βα, τ > 7→ < βA, τ > if A → α ∈ P

• Success configuration: < S, ǫ >

24

Top-Down, left-right, depth-first tree traversal

the4

Det3

young7

Adj6

boy9

N8

N5

NP2

saw12

Vt11

a15

Det14

dragon17

N16

NP13

VP10

S1
S → NP VP
VP → Vt NP
NP → Det N
N → Adj N

Vt → saw
Det → the
Det → a
N → dragon
N → boy
Adj → young

21

A trace (parser/simple/grammar.pl, parser/simple/td parser trace.pl)

?- td_parse([the,young,boy,saw,the,dragon]).

< [s], [the, young, boy, saw, the, dragon] >

< [np, vp], [the, young, boy, saw, the, dragon] >

< [det, n, vp], [the, young, boy, saw, the, dragon] >

< [the, n, vp], [the, young, boy, saw, the, dragon] >

< [n, vp], [young, boy, saw, the, dragon] >

< [dragon, vp], [young, boy, saw, the, dragon] >

< [boy, vp], [young, boy, saw, the, dragon] >

< [adj, n, vp], [young, boy, saw, the, dragon] >

< [young, n, vp], [young, boy, saw, the, dragon] >

< [n, vp], [boy, saw, the, dragon] >

< [dragon, vp], [boy, saw, the, dragon] >

< [boy, vp], [boy, saw, the, dragon] >

< [vp], [saw, the, dragon] >

22

A trace (parser/simple/grammar.pl, parser/simple/sr parser trace.pl)

| ?- sr_parse([the,young,boy,saw,the,dragon]).

START: <[],[the,young,boy,saw,the,dragon]>

Reduce []? no

Shift "the"

<[the],[young,boy,saw,the,dragon]>

Reduce [the] => det

<[det],[young,boy,saw,the,dragon]>

Reduce [det]? no

Reduce []? no

Shift "young"

<[det,young],[boy,saw,the,dragon]>

Reduce [det,young]? no

Reduce [young] => adj

27

<[det,adj],[boy,saw,the,dragon]>

Reduce [det,adj]? no

Reduce [adj]? no

Reduce []? no

Shift "boy"

<[det,adj,boy],[saw,the,dragon]>

Reduce [det,adj,boy]? no

Reduce [adj,boy]? no

Reduce [boy] => n

<[det,adj,n],[saw,the,dragon]>

Reduce [det,adj,n]? no

Reduce [adj,n] => n

<[det,n],[saw,the,dragon]>

Reduce [det,n] => np

<[np],[saw,the,dragon]>

Reduce [np]? no

Reduce []? no

Shift "saw"

28

A shift-reduce parser in Prolog (parser/simple/sr parser.pl)

:- op(1100,xfx,’--->’).

sr_parse(String) :- sr_parse([],String). % Start

sr_parse([s],[]). % Success

sr_parse(Stack,String) :- % Reduce

append(Beta,Alpha,Stack),

(A ---> Alpha),

append(Beta,[A],NewStack),

sr_parse(NewStack,String).

sr_parse(Stack,[Word|String]) :- % Shift

append(Stack,[Word],NewStack),

sr_parse(NewStack,String).

25

Bottom-up, left-right, depth-first tree traversal

the1

Det2

young3

Adj4

boy5

N6

N7

NP8

saw9

Vt10

a11

Det12

dragon13

N14

NP15

VP16

S17
S → NP VP
VP → Vt NP
NP → Det N
N → Adj N

Vt → saw
Det → the
Det → a
N → dragon
N → boy
Adj → young

26

A shift-reduce parser for grammars in CNF
using difference lists to encode the string (parser/simple/cnf sr.pl)

:- op(1100,xfx,’--->’).

recognise(String) :- recognise([],String) % Start

recognise([s],[]). % Success

recognise([Y,X|Rest],S) :- % Reduce

(LHS ---> [X,Y]),

recognise([LHS|Rest],S).

recognise(Stack,[Word|S]) :- % Shift

Cat ---> [Word],

recognise([Cat|Stack],S).

31

A trace (parser/simple/grammar.pl, parser/simple/cnf sr trace.pl)

| ?- recognise([the,young,boy,saw,the,dragon]).

START: <[],[the,young,boy,saw,the,dragon]>

Shift "the" as "det"

<[det],[young,boy,saw,the,dragon]>

Shift "young" as "adj"

<[adj,det],[boy,saw,the,dragon]>

Reduce [det,adj]? no

Shift "boy" as "n"

<[n,adj,det],[saw,the,dragon]>

Reduce [adj,n] => n

<[n,det],[saw,the,dragon]>

Reduce [det,n] => np

<[np],[saw,the,dragon]>

Shift "saw" as "vt"

32

<[np,saw],[the,dragon]>

Reduce [np,saw]? no

Reduce [saw] => vt

<[np,vt],[the,dragon]>

Reduce [np,vt]? no

Reduce [vt]? no

Reduce []? no

Shift "the"

<[np,vt,the],[dragon]>

Reduce [np,vt,the]? no

Reduce [vt,the]? no

Reduce [the] => det

<[np,vt,det],[dragon]>

Reduce [np,vt,det]? no

Reduce [vt,det]? no

Reduce [det]? no

Reduce []? no

Shift "dragon"

29

<[np,vt,det,dragon],[]>

Reduce [np,vt,det,dragon]? no

Reduce [vt,det,dragon]? no

Reduce [det,dragon]? no

Reduce [dragon] => n

<[np,vt,det,n],[]>

Reduce [np,vt,det,n]? no

Reduce [vt,det,n]? no

Reduce [det,n] => np

<[np,vt,np],[]>

Reduce [np,vt,np]? no

Reduce [vt,np] => vp

<[np,vp],[]>

Reduce [np,vp] => s

<[s],[]>

SUCCESS!

30

<[vt,np],[the,dragon]>

Reduce [np,vt]? no

Shift "the" as "det"

<[det,vt,np],[dragon]>

Reduce [vt,det]? no

Shift "dragon" as "n"

<[n,det,vt,np],[]>

Reduce [det,n] => np

<[np,vt,np],[]>

Reduce [vt,np] => vp

<[vp,np],[]>

Reduce [np,vp] => s

<[s],[]>

SUCCESS!

33

