Introduction to Parsing

Detmar Meurers: Intro to Computational Linguistics |
OSU, LING 684.01

Overview

What is a parser?
e Under what criteria can they be evaluated?
e Parsing strategies

— top-down vs. bottom-up
— left-right vs. right-left
— depth-first vs. breadth-first

e Implementing different types of parsers:

— Basic top-down and bottom-up
— More efficient algorithms

Parsers and criteria to evaluate them

e Function of a parser:

— grammar + string — analysis trees

e Main criteria for evaluating parsers:

— correctness
— completeness
— efficiency

Correctness

A parser is correct iff for every grammar and for every string, every analysis returned
by parser is an actual analysis.

Correctness is nearly always required (unless simple post-processor could eliminate
wrong analyses)

Completeness

A parser is complete iff for every grammar and for every string, every correct analysis
is found by the parser.

o In theory, always desirable.
e In practice, essential to find the ‘relevant’ analysis first (possibly using heuristics).

e For grammars licensing an infinite number of analyses this means: there is no
analysis that the parser could not find.

Efficiency

e One can reason about complexity of (parsing) algorithms by considering how it will
deal with bigger and bigger examples.

e For practical purposes, the factors ignored by such analyses are at least as important.
— profiling using typical examples important

— finding the (relevant) first parse vs. all parse

e Memoization of complete or partial results is essential to obtain efficient parsing
algorithms.




Complexity classes

If nis the length of the string to be parsed, one can distinguish the following complexity
classes:

e constant: amount of work does not depend on n
e logarithmic: amount of work behaves like logy(n) for some constant k

o polynomial: amount of work behaves like n*, for some constant k. This is
sometimes subdivided into the cases

— linear (k =1)
— quadratic (k = 2)
— cubic (k = 3)

exponential: amount of work behaves like £™, for some constant k.

Complexity and the Chomsky hierarchy

Grammar type | Worst-case complexity of recognition
regular (3) linear
context-free (2) cubic (n?)

context-sensitive (1) | exponential
general rewrite (0) undecidable

Recognition with type 0 grammars is recursively enumerable: if a string x is in the
language, the recognition algorithm will succeed, but it will not return if = is not in
the language.

Parsing strategies

1. What do we start from?

e top-down vs. bottom-up

2. In what order is the string or the RHS of a rule looked at?

o left-to-right, right-to-left, island-driven, . . .

3. How are alternatives explored?

o depth-first vs. breadth-first

Direction of processing I: Top-down

Goal-driven processing is Top-down:
e Start with the start symbol
e Derive sentential forms.

o If the string is among the sentences derived this way, it is part of the language.

Direction of processing Il: Bottom-up

Data-driven processing is Bottom-up:
e Start with the sentence.

e For each substring o of each sentential form ao/3, find each grammar rule N — o
to obtain all sentential forms aNj3.

e If the start symbol is among the sentential forms obtained, the sentence is part of
the language.

Problem: Epsilon rules (N — ¢).

The order in which one looks at a RHS

Left-to-Right

o Use the leftmost symbol first, continuing with the next to its right




How are alternatives explored? |. Depth-first

e At every choice point: Pursue a single alternative completely before trying another
alternative.

e State of affairs at the choice points needs to be remembered. Choices can be
discarded after unsuccessful exploration.

e Depth-first search is not necessarily complete.

Problem for top-down, left-to-right, depth-first processing:

e left-recursion
For example, a rule like N' — N' PP leads to non-termination.

How are alternatives explored? Il. Breadth-first

e At every choice point: Pursue every alternative for one step at a time.

e Requires serious bookkeeping since each alternative computation needs to be
remembered at the same time.

e Search is guaranteed to be complete.

Compiling and executing DCGs in Prolog

e DCGs are a grammar formalism supporting any kind of parsing regime.

e The standard translation of DCGs to Prolog plus the proof procedure of Prolog
results in a parsing strategy which is

— top-down
— left-to-right
— depth-first

Implementing parsers

e Data structures: a parser configuration

e Top-down parsing
— formal characterization
— Prolog implementation
e Bottom-up parsing
— formal characterization
— Prolog implementation
e Towards more efficient parsers:

— Left-corner
— Remembering subresults

An example grammar (parser/simple/grammar.pl)

% defining grammar rule operator
:-= op(1100,xfx,’--=>").

% lexicon: % syntactic rules:
vt ---> [saw]. s ---> [np, vp].
det ---> [the]. vp -==> [vt, np].

det ---> [a]. np ---> [det, n].
n ---> [dragon]. n ---> [adj, n].
n --—> [boy].

adj -——> [young].

A parser configuration

Assuming a left-to-right order of processing, a configuration of a parser can be
encoded by a pair of

e a stack as auxiliary memory
e the string remaining to be recognized

More formally, for a grammar G = (N,X,S, P), a parser configuration is a pair
<a,7>withae (NUX)*and 7 € *




Top-down parsing

e Start configuration for recognizing a string w: < S,w >

e Available actions:

— consume: remove an expected terminal a from the string
<ao,ar > +— < Q, T >

— expand: apply a phrase structure rule
<AB,r>—<af,T>fA—a €P

e Success configuration: < e, e >

A tOp-dOWﬂ parser in Prolog (parser/simple/td_parser.pl)

:= op(1100,xfx,’-—=>").

% Start
td_parse(String) :- td_parse([s],String).
% Success

td_parse([],[]).

% Consume
td_parse([HIT], [HIR]) :-
td_parse(T,R) .

% Expand
td_parse([A|Beta] ,String) :-
(A ---> Alpha),
append (Alpha,Beta,Stack),
td_parse(Stack,String) . 20

Top-Down, left-right, depth-first tree traversal

51 S — NP VP
_— VP — Vt NP
NP, VP NP — Det N
o —~ N — Adj N
Dets N5 Vi NP3 Vt — saw
P Py Det — the
Det — a
Adjs Ns Detia Nig N — dragon
N — boy
‘ Adj — young

thes young; boyy Sawiz ais dragony7

A trace (parser/simple/grammar.pl, parser/simple/td_parser_trace.pl)

?- td_parse([the,young,boy,saw,the,dragon]).

[s], [the, young, boy, saw, the, dragon] >

[np, vpl, [the, young, boy, saw, the, dragon] >
[det, n, vp], [the, young, boy, saw, the, dragon] >
[the, n, vp], [the, young, boy, saw, the, dragon] >
[n, vp], [young, boy, saw, the, dragon] >

[dragon, vp], [young, boy, saw, the, dragon] >
[boy, vp], [young, boy, saw, the, dragon] >

[adj, n, vp], [young, boy, saw, the, dragon] >
[young, n, vpl, [young, boy, saw, the, dragon] >
[n, vpl, [boy, saw, the, dragon] >

[dragon, vp], [boy, saw, the, dragon] >

[boy, vpl, [boy, saw, the, dragon] >

[vp], [saw, the, dragon] >

ANANANANNNANNANNANNNANNA

[vt, npl, [saw, the, dragon] >
[saw, np], [saw, the, dragon] >
[np]l, [the, dragon] >

[det, n]l, [the, dragon] >

[the, n], [the, dragon] >

[n], [dragon] >

[dragon], [dragon] >

a, a»>

AN AN NN AN ANANNA

Bottom-up parsing

Start configuration for recognizing a string w: < €,w >

Available actions:

— shift: turn to the next terminal a of the string
<o,ar > — < oa, T >

— reduce: apply a phrase structure rule
< Pa,T>—<PAT>IFA—a €P

e Success configuration: < S, e >




A shift-reduce parser in PI’OlOg (parser/simple/sr_parser.pl)

1= op(1100,xfx,’—==>7).

sr_parse(String) :- sr_parse([],String). 7% Start
sr_parse([s], [1). % Success
sr_parse(Stack,String) :- % Reduce

append (Beta,Alpha,Stack) ,

(A ---> Alpha),

append (Beta, [A] ,NewStack),
sr_parse (NewStack,String) .

sr_parse(Stack, [Word|String]) :- % Shift
append (Stack, [Word] ,NewStack) ,
sr_parse (NewStack,String) .

Bottom-up, left-right, depth-first tree traversal

Si7
/\
NPg VP16
— —
Det, N~ Vi NP5
P —
Adjy Ng Detio Ny

ther youngs boys SaWs ail  dragonys

S — NP VP
VP — Vit NP
NP — Det N
N — Adj N

Vt — saw
Det — the
Det — a

N — dragon
N — boy
Adj — young

A trace (parser/simple/grammar.pl, parser/simple/sr_parser_trace.pl)

| ?- sr_parse([the,young,boy,saw,the,dragon]).
START: <[], [the,young,boy,saw,the,dragon]>
Reduce [1? no
Shift "the"
<[the], [young,boy,saw, the,dragon]>
Reduce [the] => det
<[det], [young,boy,saw,the,dragon]>
Reduce [det]? no
Reduce []? no
Shift "young"
<[det,young], [boy,saw, the,dragon]>
Reduce [det,young]? no
Reduce [young] => adj

<[det,adj], [boy,saw,the,dragon] >
Reduce [det,adj]? no
Reduce [adj]? no
Reduce []17 no
Shift "boy"
<[det,adj,boy], [saw,the,dragon]>
Reduce [det,adj,boyl? no
Reduce [adj,boy]? no
Reduce [boy] => n
<[det,adj,n], [saw,the,dragon]>
Reduce [det,adj,nl]? no
Reduce [adj,n] =>n
<[det,n], [saw,the,dragon]>
Reduce [det,n] => np
<[np], [saw,the,dragon]>
Reduce [np]? no
Reduce []17 no
Shift "saw"

<[np,saw], [the,dragon]>
Reduce [np,saw]? no
Reduce [saw] => vt
<[np,vt], [the,dragon] >
Reduce [np,vt]? no
Reduce [vt]? no
Reduce []17 no
Shift "the"
<[np,vt,thel, [dragon]>
Reduce [np,vt,thel? no
Reduce [vt,thel? no
Reduce [the] => det
<[np,vt,det], [dragon]>
Reduce [np,vt,det]? no
Reduce [vt,det]? no
Reduce [det]? no
Reduce [1? no
Shift "dragon"

<[np,vt,det,dragon], [1>
Reduce [np,vt,det,dragon]? no
Reduce [vt,det,dragon]? no
Reduce [det,dragon]l? no
Reduce [dragon] => n
<[np,vt,det,n], [1>
Reduce [np,vt,det,n]? no
Reduce [vt,det,n]? no
Reduce [det,n] => np
<[np,vt,npl, [1>
Reduce [np,vt,npl? no
Reduce [vt,np] => vp
<[np,vp], [1>
Reduce [np,vp] => s
<[s],[1>
SUCCESS!




A shift-reduce parser for grammars in CNF
using difference lists to encode the string (parser/simple/cnf_sr.pl)

1= op(1100,xfx,’--->’).

recognise(String) :- recognise([],String) 7% Start
recognise([s], [1). % Success
recognise([Y,X|Rest],S) :- % Reduce

(LHS ---> [X,YD),
recognise ([LHS|Rest],S).

recognise(Stack, [Word|S]) :- % Shift
Cat ---> [Word],
recognise([Cat|Stack],S).

A trace (parser/simple/grammar.pl, parser/simple/cnf_sr_trace.pl)

| ?- recognise([the,young,boy,saw,the,dragon]).
START: <[], [the,young,boy,saw,the,dragon]>
Shift "the" as "det"
<[det], [young,boy,saw,the,dragon]>
Shift "young" as "adj"
<[adj,det], [boy,saw,the,dragon] >
Reduce [det,adj]? no
Shift "boy" as "n"
<[n,adj,det], [saw,the,dragon]>
Reduce [adj,n] =>n
<[n,det], [saw,the,dragon] >
Reduce [det,n] => np
<[np], [saw,the,dragon]>
Shift "saw" as "vt"

<[vt,np], [the,dragon]>
Reduce [np,vt]? no
Shift "the" as "det"
<[det,vt,np], [dragon]>
Reduce [vt,det]? no
Shift "dragon" as "n"
<[n,det,vt,np], [1>
Reduce [det,n] => np
<[np,vt,np], [1>
Reduce [vt,np] => vp
<[vp,np], [1>
Reduce [np,vp] => s
<[s1,[1>
SUCCESS!




