Introduction to Parsing

Detmar Meurers: Intro to Computational Linguistics |
OSU, LING 684.01

Overview

What is a parser?
Under what criteria can they be evaluated?
Parsing strategies

— top-down vs. bottom-up
— left-right vs. right-left
— depth-first vs. breadth-first

Implementing different types of parsers:

— Basic top-down and bottom-up
— More efficient algorithms

Parsers and criteria to evaluate them

e Function of a parser:

— grammar + string — analysis trees

e Main criteria for evaluating parsers:

— correctness
— completeness
— efficiency

Correctness

A parser is correct iff for every grammar and for every string, every analysis returned
by parser is an actual analysis.

Correctness is nearly always required (unless simple post-processor could eliminate
wrong analyses)

Completeness

A parser is complete iff for every grammar and for every string, every correct analysis
is found by the parser.

e In theory, always desirable.
o In practice, essential to find the ‘relevant’ analysis first (possibly using heuristics).

e For grammars licensing an infinite number of analyses this means: there is no
analysis that the parser could not find.

Efficiency

e One can reason about complexity of (parsing) algorithms by considering how it will
deal with bigger and bigger examples.

e For practical purposes, the factors ignored by such analyses are at least as important.
— profiling using typical examples important

— finding the (relevant) first parse vs. all parse

e Memoization of complete or partial results is essential to obtain efficient parsing
algorithms.

Complexity classes

If n is the length of the string to be parsed, one can distinguish the following complexity
classes:

e constant: amount of work does not depend on n
e logarithmic: amount of work behaves like logy(n) for some constant k

o polynomial: amount of work behaves like n*, for some constant k. This is
sometimes subdivided into the cases
linear (k = 1)
quadratic (k = 2)
cubic (k = 3)

e exponential: amount of work behaves like k", for some constant k.

Complexity and the Chomsky hierarchy

Grammar type

‘ Worst-case complexity of recognition
regular (3) linear

context-free (2) cubic (n?)
context-sensitive (1) | exponential
general rewrite (0) undecidable

Recognition with type 0 grammars is recursively enumerable: if a string « is in the
language, the recognition algorithm will succeed, but it will not return if = is not in
the language.

Parsing strategies

. What do we start from?

e top-down vs. bottom-up

. In what order is the string or the RHS of a rule looked at?

o left-to-right, right-to-left, island-driven, . ..

. How are alternatives explored?

e depth-first vs. breadth-first

Direction of processing I: Top-down

Goal-driven processing is Top-down:
e Start with the start symbol
e Derive sentential forms.

o |f the string is among the sentences derived this way, it is part of the language.

Direction of processing |l: Bottom-up

Data-driven processing is Bottom-up:
e Start with the sentence.

e For each substring o of each sentential form ao3, find each grammar rule N — o
to obtain all sentential forms aN (.

o |f the start symbol is among the sentential forms obtained, the sentence is part of
the language.

Problem: Epsilon rules (N — ¢).

The order in which one looks at a RHS

Left-to-Right

e Use the leftmost symbol first, continuing with the next to its right

How are alternatives explored? |. Depth-first

e At every choice point: Pursue a single alternative completely before trying another
alternative.

e State of affairs at the choice points needs to be remembered. Choices can be
discarded after unsuccessful exploration.

o Depth-first search is not necessarily complete.

Problem for top-down, left-to-right, depth-first processing:

o left-recursion
For example, a rule like N' — N’ PP leads to non-termination.

How are alternatives explored? Il. Breadth-first

e At every choice point: Pursue every alternative for one step at a time.

e Requires serious bookkeeping since each alternative computation needs to be
remembered at the same time.

e Search is guaranteed to be complete.

Compiling and executing DCGs in Prolog

o DCGs are a grammar formalism supporting any kind of parsing regime.

e The standard translation of DCGs to Prolog plus the proof procedure of Prolog
results in a parsing strategy which is

— top-down
— left-to-right
— depth-first

Implementing parsers

e Data structures: a parser configuration

e Top-down parsing
— formal characterization
— Prolog implementation
e Bottom-up parsing
— formal characterization
— Prolog implementation
e Towards more efficient parsers:

— Left-corner
— Remembering subresults

An example grammar (parser/simple/grammar.pl)

% defining grammar rule operator
1= op(1100,xfx,’-==>7).

% lexicon: % syntactic rules:
vt ---> [saw]. s ---> [np, vpl.
det ---> [the]. vp —==> [vt, np].
det ---> [a]. np --—> [det, n].
n ---> [dragon]. n ---> [adj, n].
n -——> [boyl.

adj ---> [young].

A parser configuration
Assuming a left-to-right order of processing, a configuration of a parser can be
encoded by a pair of

e a stack as auxiliary memory
e the string remaining to be recognized

More formally, for a grammar G = (N, X, S, P), a parser configuration is a pair
<a,7>withae (NUX)*and 7 € &*

Top-down parsing

o Start configuration for recognizing a string w: < S,w >

e Available actions:

— consume: remove an expected terminal a from the string
<ao,at >— < o, T >

— expand: apply a phrase structure rule
<A, T>—<af,T>ifA—>a €P

e Success configuration: < e, e >

A top-down parser in Prolog (parser/simple/td_parser.pl)

:= op(1100,xfx,’-—=>).

% Start
td_parse(String) :- td_parse([s],String).

% Success
td_parse([1,[]).

% Consume
td_parse([H|T], [HIR]) :-
td_parse(T,R) .

% Expand

td_parse([A|Betal ,String) :-
(A ---> Alpha),
append (Alpha,Beta,Stack),
td_parse (Stack,String) .

Top-Down, left-right, depth-first tree traversal

S1
/\

S — NP VP
VP — Vt NP
NP — Det N

N — Adj N

—

Vt — saw
P P Det — the
Det — a
N — dragon
N — boy
‘ Adj — young

they young; boyy SaWi2 215 dragon;

A trace (parser/simple/grammar.pl, parser/simple/td_parser_trace.pl)

?- td_parse([the,young,boy,saw,the,dragon]).

[s], [the, young, boy, saw, the, dragon] >

[np, vpl, [the, young, boy, saw, the, dragon] >
[det, n, vpl, [the, young, boy, saw, the, dragon] >
[the, n, vp], [the, young, boy, saw, the, dragon] >
[n, vpl, [young, boy, saw, the, dragon] >

[dragon, vpl, [young, boy, saw, the, dragon] >
[boy, vpl, [young, boy, saw, the, dragon] >

[adj, n, vpl, [young, boy, saw, the, dragon] >
[young, n, vp], [young, boy, saw, the, dragon] >
[n, vpl, [boy, saw, the, dragon] >

[dragon, vpl, [boy, saw, the, dragon] >

[boy, vp], [boy, saw, the, dragon] >

[vpl, [saw, the, dragon] >

<
<
<
<
<
<
<
<
<
<
<
<
<

[vt, npl, [saw, the, dragon] >
[saw, np], [saw, the, dragon] >
[np], [the, dragon] >

[det, n], [the, dragon] >

[the, n], [the, dragon] >

[n], [dragon] >

[dragon], [dragon] >

o, 0>

AANANANANANANNA

Bottom-up parsing

e Start configuration for recognizing a string w: < e, w >

e Available actions:

— shift: turn to the next terminal a of the string
<a,ar >— < aa,T >

— reduce: apply a phrase structure rule
<PBa,T>—<PAT>IFA—a €P

e Success configuration: < S, ¢ >

A shift-reduce parser in Prolog (parser/simple/sr_parser.pl)

1= op(1100,xfx,’-==>’).
sr_parse(String) :- sr_parse([],String). % Start

sr_parse([s],[1). % Success
sr_parse(Stack,String) :- % Reduce
append (Beta,Alpha,Stack),
(A ---> Alpha),
append (Beta, [A] ,NewStack) ,
sr_parse (NewStack,String) .

sr_parse(Stack, [Word|String]) :- % Shift
append (Stack, [Word] ,NewStack),
sr_parse (NewStack,String) .

Bottom-up, left-right, depth-first tree traversal

S — NP VP
VP — Vi NP
NP — Det N
N — Adj N

Vt — saw
Det — the
Det — a

N — dragon
N — boy
Adj — young

Adjy Ne

the; youngz boys SaWo 311 dragon;s

A trace (parser/simple/grammar.pl, parser/simple/sr_parser_trace.pl)

| ?- sr_parse([the,young,boy,saw,the,dragon]) .
START: <[], [the,young,boy,saw,the,dragon]>
Reduce []? no
Shift "the"
<[the], [young,boy,saw,the,dragon]>
Reduce [the] => det
<[det], [young,boy,saw,the,dragon]>
Reduce [det]? no
Reduce [1? no
Shift "young"
<[det,young], [boy,saw,the,dragon]>
Reduce [det,youngl? no
Reduce [young] => adj

<[det,adj], [boy,saw,the,dragon]> <[np,saw], [the,dragon]> <[np,vt,det,dragon], [1>
Reduce [det,adj]? no Reduce [np,saw]? no Reduce [np,vt,det,dragon]? no
Reduce [adj]l? no Reduce [saw] => vt Reduce [vt,det,dragon]? no
Reduce []7? no <[np,vt], [the,dragon]> Reduce [det,dragon]? no
Shift "boy" Reduce [np,vt]? no Reduce [dragon] => n
<[det,adj,boyl, [saw,the,dragon]> Reduce [vt]? no <[np,vt,det,n], [1>
Reduce [det,adj,boy]? no Reduce []? no Reduce [np,vt,det,n]? no
Reduce [adj,boy]l? no Shift "the" Reduce [vt,det,n]? no
Reduce [boy]l =>n <[np,vt,thel, [dragon]> Reduce [det,n] => np
<[det,adj,n], [saw,the,dragon]> Reduce [np,vt,thel? <[np,vt,npl, [1>
Reduce [det,adj,n]? no Reduce [vt,thel? no Reduce [np,vt,npl? no
Reduce [adj,n] =>n Reduce [the] => det Reduce [vt,np] => vp
<[det,n], [saw,the,dragon]> <[np,vt,det], [dragon]> <[np,vpl, [1>
Reduce [det,n] => np Reduce [np,vt,det]? Reduce [np,vp] => s
<[npl, [saw,the,dragon]> Reduce [vt,det]? no <[s],[1>
Reduce [np]? no Reduce [det]? no SUCCESS!
Reduce [1? no Reduce []17 no
Shift "saw" Shift "dragon"

A shift-reduce parser for grammars in CNF A trace (parser/simple/grammar.pl, parser/simple/cnf_sr_trace.pl) <[vt,np], [the,dragon]>
using difference lists to encode the string (parser/simple/cnf_sr.pl) Reduce [np,vt]? no
Shift "the" as "det"
<[det,vt,np], [dragon]>
1= op(1100,xfx,’-==>’). | 7- rec?%n?se([the,young,boy,saw,the,dr?gon]). Reduce [vt,det]? no
START: <[], [the,young,boy,saw,the,dragon]> ; " "
recognise(String) :- recognise([],String) 7% Start Shift "the" as "det" <[n,d§i?it,n2§?%§:
recognise([s], [1) % Success <[det],Fyouﬁg,boyisaw,:het?ragon]> Reduce [det,n] => np
g B . o : Shlf;: |:young' as "adj : <[np,vt,npl, [1>
<[adj,det], [boy,saw,the,dragon]> Reduce [vt,np] =>
. e ’ ,np vp
recognise([Y,X|Rest],S) : % Reduce Reduce [det,adj]? no <Tvp,npl, [1>
. Reduce [np,vp] => s
recognise ([LHS|Rest],S) . <[n,agjédet]E[:éw,ﬁhe,dragon]> <[s1, 01>
educe l[adj,n] =>n ESS!
recognise(Stack, [Word|S]) :- % Shift <[n,det], [saw, the,dragon]> SUCCESS!
Cat ---> [Word], Reduce [det,n] => np
recognise([Cat|Stack],S). <[np], [saw,the,dragon]>
Shift "saw" as "vt"

as "n"

(LHS --—> [X,YD), Shift "boy" as "n"

