A DCG for English
using gap threading for unbounded dependencies

Detmar Meurers: Intro to Computational Linguistics |
OSU, LING 684.01

Towards a basic DCG for English: X-bar Theory

Generalizing over possible phrase structure rules, one can attempt to
specify DCG rules fitting the following general pattern:

X2 — specifier? X!

X! — X! modifier?

X! — modifier? X!

X! — X° complement?x

To turn this general X-bar pattern into actual DCG rules,

e X has to be replaced by one of the atoms encoding syntactic
categories, and

e the bar-level needs to be encoded as an argument of each predicate
encoding a syntactic category.

Noun, preposition, and adjective phrases

n(2,Num --> pronoun(Num.

n(2, Num) --> proper_noun(Nunj.
n(2, Num --> det(Num), n(1, Num.
n(2,plur) -->n(1,plur).

n(1, Num) --> pre_nod, n(1, Num).
n(1, Num --> n(1, Nun), post_nod.
n(1, Num --> n(0, Nunm.

p(2,Pform) --> p(1,Pform.
p(1,Pform --> adv, p(1,Pforn). %slowy past the w ndow
p(1,Pform) --> p(0,Pform, n(2,_).

a(2) --> deg, a(l). %very sinple
a(1l) --> adv, a(l). % conmonly used
a(1) --> a(0).

Verb phrases and sentences

v(2, Vform Num v(1, Vform Nun).

v(1, Vform Num adv, v(1,VformNum.

v(1, Vform Num v(1, Vform Num), verb_postnods.
v(1, Vform Num v(0,intrans, Vform Nun .

v(1, Vform Num v(0,trans, Vform Num, n(2).
v(1, Vform Num v(0,ditrans, Vform Num), n(2),

s(Vform --> n(2,Num, v(2,VformNum.

n(2).

From local to non-local dependencies

e A head generally realizes its arguments locally within its head
domain, i.e., within a local tree if the X-bar schema is assumed.

e Certain kind of constructions resist this generalization, such as, for
example, the wh-questions discussed below.

e How can the non-local relation between a head and such arguments
be licensed? How can the properties be captured?

A first example: Wh-elements

Wh-elements can have different functions:

(1) a. Who did Hobbs see _?
b. Who do you think _ saw the man? Subject of verb
c. Who did Hobbs give the book to _ ? Object of prep
d. Who did Hobbs consider _ to be a fool? Object of obj-control verb

Object of verb

Wh-elements can also occur in subordinate clauses:

(2) a. I asked who the man saw _ .
b. 1 asked who the man considered _ to be a fool .
c. | asked who Hobbs gave the book to _ .
d. | asked who you thought _ saw Hobbs.

Different categories can be extracted:

(3) a. Which man did you talk to _ ?
b. [To [which man]] did you talk _ ?
c. [How ill] has the man been _?
d. [How frequently] did you see the man _?

This sometimes provides multiple options for a constituent:

(4) a. Who does he rely [on _]?
b. [On whom] does he rely _ ?

Unboundedness:

(5) a. Who do you think Hobbs saw _ ?
b. Who do you think Hobbs said he saw _ ?
¢. Who do you think Hobbs said he imagined that he saw _ ?

Unbounded dependency constructions

An unbounded dependency construction

— involves constituents with different functions
— involves constituents of different categories
— is in principle unbounded

Two kind of unbounded dependency constructions (UDCs)

— Strong UDCs
— Weak UDCs (easy, purpose infinives, ...) — not addressed here

Strong UDCs

An overt constituent occurs in a non-argument position:

Topicalization:
(6) Kim;, Sandy loves _; .

Wh-questions:
(7) 1 wonder [who; Sandy loves _;].

Wh-relative clauses:
(8) This is the politician [who; Sandy loves _;].

It-clefts:
(9) Itis Kim; [who; Sandy loves _;].

Pseudoclefts:
(10) [What; Sandy loves _;] is Kim;.

Link from filler to gap needed to identify category An example for a strong UDC A small DCG (dcg/udc/deg _basis.pl)

(11) a. Kim;, Sandy trusts _;. S
b. [OnKim];, Sandy depends _;. . np --> [mary] np,
(12) a. *[On Kim];, Sandy trusts _;. SINP L phn] vp.
b. * Kim;, Sandy depends _;. ! c[fido]. "
- y
And this link has to be established for an unbounded length: / VPINP; p -->[to]. np.

-->
(13) a. Kim;, Chris knows Sandy trusts _;. . PP ﬁp vd,
b. [On Kim];, Chris knows Sandy depends _;. SINP; Middle np,
(14) a. *[On Kim];, Chris knows Sandy trusts _;. vt --> [loves]. pp.
b. * Kim;, Chris knows Sandy depends _;. VPINP; vd --> [gives].
(15) a. Kim;, Dana believes Chris knows Sandy trusts _;. S Vs --> [knows]. \S’S'
b. [On Kim];, Dana believes Chris knows Sandy depends _;. :
(16) a. *[On Kim];, Dana believes Chris knows Sandy trusts _;. v NP/NP; Bottom
b. * Kim;, Dana believes Chris knows Sandy depends _;. IikLes I

Towards a Prolog encoding of strong UDCs

A mini grammar with gaps (dcg/udc/dcg _gapsi.pl) Towards different kinds of gaps (dcgiudc/deg _gaps2.pl) % (3) B;Jt tom of []UDC
np(gap -->[].

% 1) Top of UDC: realizing filler pp(gap) -->[I.

s(nogap) --> np(nogap), s(gap). % 1) Top of UDC. realizing filler

s(nogap) --> np(nogap), s(gap). % Lexi con”

np(nogap) --> [mary];[john];[fido].
p -->[to].

vt --> [l oves].

vd --> [gives].

% 2) Mddle of UDC. passing info
s(Gaplnfo) --> np(nogap), vp(Gaplnfo). %no subject gaps s(nogap) --> pp(nogap), s(gap).
vp(Gaplnfo) --> vt, np(Gapl nf o) .
% 2) Mddle of UDC: passing info

% 3) Bottom of UDC s(Gaplnfo) --> np(nogap), vp(Gaplnfo). %no subject gaps

> .
np(9ap) 0 vp(Gapl nfo) --> vt, np(Gaplnfo).

% " Lexi con" vp(Gpl nfo) --> vd, np(Gaplnfo), pp(nogap).
np(nogap) --> [mary];[john];[fido]. vp(Gaplnfo) --> vd, np(nogap), pp(Gaplnfo).

vt --> [loves]. pp(Gaplnfo) -->p, np(Gaplnfo).

Towards a Prolog encoding of strong UDCs Towards a Prolog encoding of strong UDCs Towards a Prolog encoding of strong UDCs

Different kinds of gaps (dcg/udc/deg _gaps3.pl) % (3) B?t t ;J;n of U[D]C From hardcoded gap percolation to gap threading
np(gap(np)) --> .
pp(gap(pp)) --> [].

% 1) Top of UDC: realizing filler op v . N A
% " L Two problems of current encoding:
s(nogap) --> np(nogap). s(gap(np)). np(nogap) --> [maryl: L] ohnl: [f1do]. P ?

s(nogap) --> pp(nogap), s(gap(pp)). \F;t : H gl/és] - « Two rules are needed to license ditransitive VPs.

% 2) Mddle of UDC: passing info vd --> [gives]. e In sentences without topicalization, two identical analyses arise for
s(Gapl nfo) --> np(nogap), vp(Gaplnfo). % no subj ect gaps ditransitive VPs.

vp(Gaplnfo) --> vt, np(Gaplnfo). Idea:
vp(Gapl nfo) --> vd, np(Gaplnfo), pp(nogap).

vp(Gaplnfo) --> vd, np(nogap), pp(Gapl nf o). o Use difference-list encoding to thread occurrence of gaps through the

pp(Gapl nfo) --> p, np(Gapl nfo). tree (“gap threading”).

Towards a Prolog encoding of strong UDCs Towards a Prolog encoding of strong UDCs Towards a Prolog encoding of strong UDCs

An encoding using gap threading (dcg/udc/dcg —gaps4.pl)

% 1) Top of UDC: realizing filler

s([1,[1) -->np([].[1), s(lgap(np)],
s([1.01) --> pp(I1.11)

% 2) Mddle of UDC: passing info
s(®,9 -->np([].[]), vp(,G.
vp(@0,Q --> vt, np(@, G.

vp(®0,Q --> vd, np(Q®,Gl), pp(GL Q.
pp(R0, G -->p, np(D, Q.

Towards a Prolog encoding of strong UDCs

[1).
» s([gap(pp)]. [1).

% 3) Bottom of UDC
np([gap(np)].[1) -->[].
pp(lgap(pp)].[1) --> [I.

% " Lexi con”

np(X,X) --> [mary];[john];[fido].

p -->([to].

vt --> [loves]. vd --> [gives].

Towards a Prolog encoding of strong UDCs

Reading assignment

Read the following chapters from the lecture notes:

e Chapter 4: DCGs as a Grammar Formalism

e Chapter 5: Unbounded Dependencies in DCGs

Towards a Prolog encoding of strong UDCs

