Remembering subresults (Part I): Well-formed substring tables

Detmar Meurers: Intro to Computational Linguistics I OSU, LING 684.01

Problem: Inefficiency of recomputing subresults

Two example sentences and their potential analysis:

- (1) He [gave [the young cat] [to Bill]].
- (2) He [gave [the young cat] [some milk]].

The corresponding grammar rules:

```
vp ---> [v_ditrans, np, pp_to].
vp ---> [v_ditrans, np, np].
```

Solution: Memoization

- Store intermediate results:
 - a) completely analyzed constituents: well-formed substring table or (passive) chart
 - b) partial and complete analyses:(active) chart
- All intermediate results need to be stored for completeness.
- All possible solutions are explored in parallel.

CFG Parsing: The Cocke Younger Kasami Algorithm

- Grammar has to be in Chomsky Normal Form (CNF), only
 - RHS with a single terminal: $A \rightarrow a$
 - RHS with two non-terminals: $A \rightarrow BC$
 - no ϵ rules $(A \rightarrow \epsilon)$
- A representation of the string showing positions and word indices:

$$\cdot_0 \ w_1 \cdot_1 \ w_2 \cdot_2 \ w_3 \cdot_3 \ w_4 \cdot_4 \ w_5 \cdot_5 \ w_6 \cdot_6$$

For example: \cdot_0 the \cdot_1 young \cdot_2 boy \cdot_3 saw \cdot_4 the \cdot_5 dragon \cdot_6

The well-formed substring table (= passive chart)

- The well-formed substring table, henceforth (passive) chart, for a string of length n is an $n \times n$ matrix.
- The field (i,j) of the chart encodes the set of all categories of constituents that start at position i and end at position j, i.e. $chart(i,j) = \{A \mid A \Rightarrow^* w_{i+1} \dots w_j\}$
- The matrix is triangular since no constituent ends before it starts.

Coverage Represented in the Chart

An input sentence with 6 words:

$$\cdot_0$$
 $w_1 \cdot_1$ $w_2 \cdot_2$ $w_3 \cdot_3$ $w_4 \cdot_4$ $w_5 \cdot_5$ $w_6 \cdot_6$

Coverage represented in the chart:

		TO:							
		1	2	3	4	5	6		
	0	0–1	0–2	0–3	0–4	0–5	0–6		
	1		1–2	1–3	1–4	1–5	1–6		
FROM:	2			2–3	2–4	2–5	2–6		
	3				3–4	3–5	3–6		
	4					4–5	4–6		
	5						5–6		

Example for Coverage Represented in Chart

Example sentence:

$$\cdot_0$$
 the \cdot_1 young \cdot_2 boy \cdot_3 saw \cdot_4 the \cdot_5 dragon \cdot_6

Coverage represented in chart:

	1	2	3	4	5	6
0	the	the young	the young boy	the young boy saw	the young boy saw the	the young boy saw the dragon
1		young	young boy	young boy saw	young boy saw the	young boy saw the dragon
2			boy	boy saw	boy saw the	boy saw the dragon
3				saw	saw the	saw the dragon
4					the	the dragon
5						dragon

An Example for a Filled-in Chart

Input sentence:

 \cdot_0 the \cdot_1 young \cdot_2 boy \cdot_3 saw \cdot_4 the \cdot_5 dragon \cdot_6

Chart:

	1	2	3	4	5	6
0	{Det}	{}	{NP}	{}	{}	{S}
1		$\{Adj\}$	$\{N\}$	{}	{}	{}
2			$\{N\}$	{}	{}	{}
3				{V, N}	{}	{VP}
4					{Det}	{NP}
5						{N}

Grammar:

 $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$

 $VP \, \to \, Vt \, \, NP$

 $NP \rightarrow Det N$

 $N \to Adj N$

 $Vt\,\to\,\text{saw}$

 $\mathsf{Det} \to \mathsf{the}$

 $\mathsf{Det} \to \mathsf{a}$

 $N \, \to \, dragon$

 $N \rightarrow boy$

 $N \to saw$

 $\mathsf{Adj} \to \mathsf{young}$

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0						
1						
2						
3						
4						
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1					
1						
2						
3						
4						
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1					
1		2				
2						
3						
4						
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3				
1		2				
2						
3						
4						
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3				
1		2				
2			4			
3						
4						
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3				
1		2	5			
2			4			
3						
4						
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6			
1		2	5			
2			4			
3						
4						
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6			
1		2	5			
2			4			
3				7		
4						
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6			
1		2	5			
2			4	8		
3				7		
4						
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6			
1		2	5	9		
2			4	8		
3				7		
4						
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10		
1		2	5	9		
2			4	8		
3				7		
4						
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10		
1		2	5	9		
2			4	8		
3				7		
4					11	
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10		
1		2	5	9		
2			4	8		
3				7	12	
4					11	
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10		
1		2	5	9		
2			4	8	13	
3				7	12	
4					11	
5						

```
\begin{split} \text{for } j := 1 \text{ to length}(string) \\ \text{lexical\_chart\_fill}(j-1,j) \\ \text{for } i := j-2 \text{ down to } 0 \\ \text{syntactic\_chart\_fill}(i,j) \end{split}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10		
1		2	5	9	14	
2			4	8	13	
3				7	12	
4					11	
5						

```
\begin{split} \text{for } j := 1 \text{ to length}(string) \\ \text{lexical\_chart\_fill}(j-1,j) \\ \text{for } i := j-2 \text{ down to } 0 \\ \text{syntactic\_chart\_fill}(i,j) \end{split}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	
2			4	8	13	
3				7	12	
4					11	
5						

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	
2			4	8	13	
3				7	12	
4					11	
5						16

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	
2			4	8	13	
3				7	12	
4					11	17
5						16

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	
2			4	8	13	
3				7	12	18
4					11	17
5						16

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	
2			4	8	13	19
3				7	12	18
4					11	17
5						16

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	20
2			4	8	13	19
3				7	12	18
4					11	17
5						16

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	21
1		2	5	9	14	20
2			4	8	13	19
3				7	12	18
4					11	17
5						16

```
\begin{aligned} \text{for } j &:= 1 \text{ to length}(string) \\ & \text{lexical\_chart\_fill}(j-1,j) \\ & \text{for } i := j-2 \text{ down to } 0 \\ & \text{syntactic\_chart\_fill}(i,j) \end{aligned}
```

lexical_chart_fill(j-1,j)

- Idea: Lexical lookup. Fill the field (j-1,j) in the chart with the preterminal category dominating word j.
- Realized as:

$$chart(j-1,j) := \{ X \mid X \to \mathsf{word}_j \in \mathsf{P} \}$$

syntactic_chart_fill(i,j)

• Idea: Perform all reduction step using syntactic rules such that the reduced symbol covers the string from i to j.

$$\bullet \text{ Realized as: } chart(i,j) = \begin{cases} A & \exists BC \in P, \\ i < k < j, \\ B \in chart(i,k), \\ C \in chart(k,j) \end{cases}$$

ullet Explicit loops over every possible value of k and every context free rule:

```
\begin{split} chart(i,j) &:= \{\}. \\ \text{for } k := i+1 \text{ to } j-1 \\ \text{for every } A \to BC \in P \\ \text{if } B \in chart(i,k) \text{ and } C \in chart(k,j) \text{ then } \\ chart(i,j) &:= chart(i,j) \cup \{\mathsf{A}\}. \end{split}
```

The Complete CYK Algorithm

Input: start category S and input string

```
\begin{split} n := \mathsf{length}(string) \\ & \text{for } j := 1 \text{ to } n \\ & chart(j-1,j) := \{\mathsf{X} \mid \mathsf{X} \to \mathsf{word}_j \in \mathsf{P}\} \\ & \text{for } i := j-2 \text{ down to } 0 \\ & chart(i,j) := \{\} \\ & \text{for } k := i+1 \text{ to } j-1 \\ & \text{for every } A \to BC \in P \\ & \text{if } B \in chart(i,k) \text{ and } C \in chart(k,j) \text{ then } \\ & chart(i,j) := chart(i,j) \cup \{\mathsf{A}\} \end{split}
```

Output: if $S \in chart(0, n)$ then accept else reject

Example Application of the CYK Algorithm

Lexical Entry: the

(j=1), field chart $(0,1)$	(1 - 1)
----------------------------	---------

	1	2	3	4	5
0	d				
1					
2					
3					
4					

Example Application of the CYK Algorithm

Lexical Entry: cat

(j = 2), field chart(1,2)

	1	2	3	4	5
0	d				
1		n			
2					
3					
4					

Example Application of the CYK Algorithm

	1	2	3	4	5
0	d	np			
1		n			
2					
3					

Lexical Entry: chases

(j = 3), field chart(2,3)

	1	2	3	4	5
0	d	np			
1		n			
2			V		
3					
4					

$$s \rightarrow np \ vp \qquad d \rightarrow the$$
 $np \rightarrow d \ n \qquad n \rightarrow dog$ $vp \rightarrow v \ np \qquad n \rightarrow cat$ $v \rightarrow chases$

•	3
ightarrow dog	i = 1
ightarrow cat	· -
→ chases	k = 2

	1	2	3	4	5
0	d	np			
1		n			
2			V		
3					
4					

$$s \rightarrow np \ vp \qquad d \rightarrow the$$
 $np \rightarrow d \ n \qquad n \rightarrow dog$ $vp \rightarrow v \ np \qquad n \rightarrow cat$ $v \rightarrow chases$

d n	$n \to dog$	i = 0
v np	$n \rightarrow cat$ $v \rightarrow chases$	k = 1

	1	2	3	4	5
0	d	np			
1		n			
2			٧		
3					
4					

j = 3
i = 0
k = 2

	1	2	3	4	5
0	d	np			
1		n			
2			V		
3					
4					

Lexical Entry: the

(j = 4), field chart(3,4)

	1	2	3	4	5
0	d	np			
1		n			
2			V		
3				d	
4					

$$s \rightarrow np \ vp \qquad d \rightarrow the$$
 $np \rightarrow d \ n \qquad n \rightarrow dog$ $vp \rightarrow v \ np \qquad n \rightarrow cat$ $v \rightarrow chases$

	3
ho ightarrow dog	i = 2
$_{I} o cat$	1 — 2
v → chases	k = 3

	1	2	3	4	5
0	d	np			
1		n			
2			V		
3				d	
4					

j = 4
i = 1
k = 2

	1	2	3	4	5
0	d	np			
1		n			
2			V		
3				d	
4					

j = 4
i = 1
k = 3

	1	2	3	4	5
0	d	np			
1		n			
2			V		
3				d	
4					

j = 4
i = 0
k = 1

	1	2	3	4	5
0	d	np			
1		n			
2			٧		
3				d	
4					

	1	2	3	4	5
0	d	np			
1		n			
2			٧		
3				d	

j = 4
i = 0
k = 3

	1	2	3	4	5
0	d	np			
_1		n			
2			V		
3				d	
4					

Lexical Entry: dog

	1	2	3	4	5
0	d	np			
1		n			
2			V		
3				d	
4					n

	1	2	3	4	5
0	d	np			
1		n			
2			V		
3				d	np
4					n

j = 5
i = 3
k = 4

	1	2	3	4	5
0	d	np			
1		n			
2			\ \		vp
3				d	np
4					n

j = 5
i = 2
k = 3

	1	2	3	4	5
0	d	np			
1		n			
2			V		vp
3				d	np
4					n

j =	5
i =	2
k =	= 4

	1	2	3	4	5
0	d	np			
1		n			
2			V		vp
3				d	np
4					n

	1	2	3	4	5
0	d	np			
1		n			
2			V		vp
3				d	np
4					n

j	= 5	
i	= 1	
k	= 3	

	1	2	3	4	5
0	d	np			
1		n			
2			V		vp
3				d	np

j	= 5
i	= 1
k	= 4

	1	2	3	4	5
0	d	np			
1		n			
2			V		vp
3				d	np
4					n

j = 5
i = 0
k = 1

	1	2	3	4	5
0	d	np			S
1		n			
2			V		vp
3				d	np
4					n

j = 5
i = 0
k = 2

	1	2	3	4	5
0	d	np			S
1		n			
2			V		vp
3				d	np
4					n

	1	2	3	4	5
0	d	np			S
1		n			
2			V		vp
3				d	np
4					n

Dynamic knowledge bases in PROLOG

• Declaration of a dynamic predicate: dynamic/1 declaration, e.g.:

```
:- dynamic chart/3.
```

to store facts of the form chart(From, To, Category):

• Add a fact to the database: assert/1, e.g.:

```
assert(chart(1,3,np)).
```

Special versions asserta/1/assertz/1 ensure adding facts first/last.

• Removing a fact from the database: retract/1, e.g.:

```
retract(chart(1,_,np)).
```

To remove all matching facts from the database use retractall/1

The CYK algorithm in PROLOG (parser/cky/cky.pl)

```
% fill_chart(+WordList,+Current minus one,+Last)
% J-LOOP from 1 to n
fill_chart([],N,N).
fill_chart([W|Ws],JminOne,N) :-
   J is JminOne + 1,
   lexical_chart_fill(W,JminOne,J),
   %
   I is J - 2,
   syntactic_chart_fill(I,J),
   fill_chart(Ws,J,N).
```

```
% lexical_chart_fill(+Word,+JminOne,+J)
% fill diagonal with preterminals

lexical_chart_fill(W,JminOne,J) :-
    (Cat ---> [W]),
    add_to_chart(JminOne,J,Cat),
    fail
; true.
```

```
% syntactic_chart_fill(+I,+J)
% I-LOOP from J-2 downto 0

syntactic_chart_fill(-1,_) :- !.
syntactic_chart_fill(I,J) :-
   K is I+1,
   build_phrases_from_to(I,K,J),
   %
   IminOne is I-1,
   syntactic_chart_fill(IminOne,J).
```

```
% build_phrases_from_to(+I,+Current-K,+J)
% K-LOOP from I+1 to J-1
build_phrases_from_to(_,J,J) :- !.
build_phrases_from_to(I,K,J) :-
   chart(I,K,B),
   chart(K,J,C),
   (A ---> [B,C]),
   add_to_chart(I,J,A),
   fail
 ; KplusOne is K+1,
   build_phrases_from_to(I,KplusOne,J).
```

```
% add_to_chart(+Cat,+From,+To): add if not yet there
add_to_chart(From,To,Cat) :-
        chart(From,To,Cat),
    !.
add_to_chart(From,To,Cat) :-
    assertz(chart(From,To,Cat).
```