Remembering subresults (Part 1):
Well-formed substring tables

Detmar Meurers: Intro to Computational Linguistics |
OSU, LING 684.01

‘ Problem: Inefficiency of recomputing subresults |

Two example sentences and their potential analysis:
(1) He [gave [the young cat] [to Bill]].
(2) He [gave [the young cat] [some milk]].

The corresponding grammar rules:

vp —--> [v_ditrans, np, pp_tol.
vp ———> [v_ditrans, np, np].

2/44

‘ Solution: Memoization |

e Store intermediate results:

a) completely analyzed constituents:
well-formed substring table or (passive) chart

b) partial and complete analyses:
(active) chart

e All intermediate results need to be stored for completeness.

e All possible solutions are explored in parallel.

3/44

‘ CFG Parsing: The Cocke Younger Kasami Algorithm |

e Grammar has to be in Chomsky Normal Form (CNF), only

— RHS with a single terminal: A — a
— RHS with two non-terminals: A — BC
— no € rules (A — ¢)

e A representation of the string showing positions and word indices:
o Wiy W2 0y W3 r3 Wy vy W5 75 We g

For example: -, the -, young -, boy -, saw -, the -, dragon -,

4/44

‘ The well-formed substring table (= passive chart) |

e The well-formed substring table, henceforth (passive) chart, for a string of length n is
an n. X n matrix.

e The field (¢,7) of the chart encodes the set of all categories of constituents that start
at position ¢ and end at position 7, i.e.

chart(i,j) = {A | A= wipr... w;}

e The matrix is triangular since no constituent ends before it starts.

5/44

‘ Coverage Represented in the Chart |

An input sentence with 6 words:

o Wi vy W2 0y W3 r3 Wy vy W5 =5 We g
Coverage represented in the chart:
TO:
1 2 3 4 5 6

0|0-1|02|03|04]|05]|06

1 1-2 |1 1-3|1-4|1-5| 1-6

FROM: 75 2-3 | 24 | 2-5 | 2-6

3 34 | 35|36

4 45 | 4-6

5 5-6

6/44

Example sentence:

‘ Example for Coverage Represented in Chart |

the -, young -, boy -, saw -

the -, dragon -

0 4 6
Coverage represented in chart:

1 2 3 4 5 6
0 | the | the young | the young boy | the young boy saw | the young boy saw the [the young boy saw the dragon
1 young young boy young boy saw young boy saw the young boy saw the dragon
2 boy boy saw boy saw the boy saw the dragon
3 saw saw the saw the dragon
4 the the dragon
5 dragon

7/44

Input sentence:

-, the -, young -, boy -, saw -

‘ An Example for a Filled-in Chart |

4

the -, dragon -

Chart:
1 2 3 4 5 6
0 | {Det} | {} {NP} | {} {} {S}
1 {Adj} | {N} | {} {} {}
2 {N} | {J {} {}
3 {V. N} | {} {VP}
4 {Det} | {NP}
5 {N}

Grammar:

S — NP VP
VP — Vt NP
NP — Det N
N — Adj N
Vt — saw
Det — the
Det — a

N — dragon
N — boy

N — saw
Adj — young

8/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that
end at a later point.

for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fort:=7 —2 down to 0
syntactic_chart_fill (i, j)

bW O

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that
end at a later point.

for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fort:=7 —2 down to 0
syntactic_chart_fill (i, j)

bW O

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that
end at a later point.

3 for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fort:=7 —2 down to 0
syntactic_chart_fill (i, j)

bW O

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that
end at a later point.

3 for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fort:=7 —2 down to 0
syntactic_chart_fill (i, j)

bW O

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that
end at a later point.

3 for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fort:=7 —2 down to 0
syntactic_chart_fill (i, j)

bW O

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that
end at a later point.

R for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fort:=7 —2 down to 0
syntactic_chart_fill (i, j)

bW O

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that
end at a later point.

for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

N
SO Ww

fort:=7 —2 down to 0
syntactic_chart_fill (i, j)

bW O

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that
end at a later point.

1123|4156

0[1]3]|6 | |

1 2 |5 for j := 1 to length(string)
lexical_chart_fill(j — 1, 7)

2 4 . '
fori:=7—2downto0

A syntactic_chart_fill(z, 7)

5

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that
end at a later point.

1123|4156

0[1]3]|6 | |

1 2 |5 for j := 1 to length(string)
lexical_chart_fill(j — 1, 7)

2 41 8 . |
fori:=7—2downto0

A syntactic_chart_fill(z, 7)

5

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that
end at a later point.

112 (3| 4 5 6
0|1(3]|6 . .
for j := 1 to length(string)

1 2159 . N .
lexical_chart_fill(j — 1, j)

2 41 8 . .
fori:=7—2downto0

3 7 . e

1 syntactic_chart_fill(z, 7)

5

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fort:=7 —2 down to 0
syntactic_chart_fill (i, j)

1123 4 §)
013 (6|10
1 25| 9
2 41 8
3 7
4
5

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fori:=7—2downto0

syntactic_chart_fill (i, j)

112|134 |5 6
0113|610
1 2159
2 4 | 8
3 7
4 11
5

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fori:=7—2downto0

syntactic_chart_fill (i, j)

11234 |5]| 6
0113|610
1 2159
2 4 | 8
3 7 | 12
4 11
5

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fori:=7—2downto0

syntactic_chart_fill (i, j)

11234 |5]| 6
0113|610
1 2159
2 4| 8 |13
3 7 | 12
4 11
5

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fori:=7—2downto0

syntactic_chart_fill (i, j)

11234 |5]| 6
0113|610
1 21519 |14
2 4| 8 |13
3 7 | 12
4 11
5

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

for j := 1 to length(string)

lexical_chart_fill(; — 1, j)

fori:=7—2downto0

syntactic_chart_fill (i, j)

11234 |5]| 6
0136|1015
1 21519 |14
2 4| 8 |13
3 7 | 12
4 11
5

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

11234 |5 |6
0136|1015
1 21519 |14
2 4| 8 |13
3 7 | 12
4 11
5 16

for j := 1 to length(string)
lexical_chart_fill(; — 1, j)
fori:=7—2downto0
syntactic_chart_fill(, j)

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

11234 |5 |6
0136|1015
1 21519 |14
2 4| 8 |13
3 7 | 12
4 11 | 17
5 16

for j := 1 to length(string)
lexical_chart_fill(; — 1, j)
fori:=7—2downto0
syntactic_chart_fill(, j)

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

11234 |5 |6
0136|1015
1 21519 |14
2 4| 8 |13
3 7 |12 | 18
4 11 | 17
5 16

for j := 1 to length(string)
lexical_chart_fill(; — 1, j)
fori:=7—2downto0
syntactic_chart_fill(, j)

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

11234 |5 |6
0136|1015
1 21519 |14
2 41 8 |13 |19
3 7 |12 | 18
4 11 | 17
5 16

for j := 1 to length(string)
lexical_chart_fill(; — 1, j)
fori:=7—2downto0
syntactic_chart_fill(, j)

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

11234 |5 |6
0136|1015
1 21519 |14 |20
2 41 8 |13 |19
3 7 |12 | 18
4 11 | 17
5 16

for j := 1 to length(string)
lexical_chart_fill(; — 1, j)
fori:=7—2downto0
syntactic_chart_fill(, j)

9/44

‘ Filling in the Chart |

e |t is important to fill in the chart systematically.

e We build all constituents that end at a certain point before we build constituents that

end at a later point.

11234 |5 |6
0136|1015 | 21
1 21519 |14 |20
2 41 8 |13 |19
3 7 |12 | 18
4 11 | 17
5 16

for j := 1 to length(string)
lexical_chart_fill(; — 1, j)
fori:=7—2downto0
syntactic_chart_fill(, j)

9/44

‘ lexical_chart _fill(j-1,j) |

e |dea: Lexical lookup. Fill the field (7 —1,7) in the chart with the preterminal category
dominating word j.

e Realized as:

chart(j —1,7) :=4{X | X — word; € P}

10/44

‘ syntactic_chart_fill(i,j) |

e |dea: Perform all reduction step using syntactic rules such that the reduced symbol
covers the string from 7 to j.

(A— BCeP,
i < k < j,

B € chart(i, k),
C € chart(k,j)

e Realized as: chart(i,j) = A

\ /

e Explicit loops over every possible value of k£ and every context free rule:

chart(i,j) := {}.
fork:=i+1toj—1
for every A — BC' € P
if B € chart(i,k) and C' € chart(k, j) then

chart(i, j) := chart(i, j) U {A}.

11/44

‘ The Complete CYK Algorithm |

Input: start category S and input string
n = length(string)

forj:=1ton
chart(j —1,7) :={X | X — word; € P}
fort:= 35— 2 down to 0
chart(i,7) :={}
fork:=i1+1toj—1
for every A — BC € P

if B € chart(i,k) and C' € chart(k, j) then
chart(i, j) := chart(i,j7) U {A}

Output: if S € chart(0,n) then accept else reject

12/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the Lexical Entry: the ((J=1 , field chart(0,1))
np —dn n — dog
Vp — vnp n— cat

v — chases
1 2 3 4 5
0 d
1
2
3
1 ./t?e\. cat @ chases @ the @ dog @

0 1 2 3 4 5

13/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the Lexical Entry: cat (') =2 , field chart(1,2))
np —dn n — dog
Vp — v np n — cat
v — chases
1 2 3 4 5
0 d
1 n
2
3 Dl N
the cat chases @ the @ dog @
4 0 1 2 3 4 5

14/44

‘ Example Application of the CYK Algorithm |

s —npvp d— the

np —dn n — dog

Vp —vnp n— cat
v — chases

1 IIIIII 3 4 5

HaliE

the cat chases @ the @ dog @

4
B O @B - o«

15/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the Lexical Entry: chases ((J=3 , field chart(2,3))
np —dn n — dog
vp — vnp n— cat

v — chases

1 2 3 4 5
0 d np
1 n
2 v
NP
3 D N v
A the cat chases the @ dog @
0 1 2 3 4 5

16/44

‘ Example Application of the CYK Algorithm |

s —npvp d— the]=3
woannT s li=1
vVp — v np n — cat
v — chases k=2
1 2 3 4 5
0 d np
ot :
2 v
[NP]
3 Dl N v
A the cat chases the @ dog @

17/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the
np —dn n — dog
vVp — v np n — cat
v — chases
1 2 3
B o]
1 n
2 Y
3
4

chases

the

4

dog

5

18/44

‘ Example Application of the CYK Algorithm |

s —npvp d— the j=3
woan nTdo =0
vVp — v np n — cat
v — chases k =2
1 2 3 4 5
|| |
1 n
2 v
A the cat chases the @ dog @
. 1 2 5 4 5

19/44

‘ Example Application of the CYK Algorithm |

s—npvp d — the Lexical Entry: the ((J=4 | field chart(3,4))
np —dn n — dog
vp — vnp n — cat

v — chases
1 2 3 4 5

0 d np

1 n

2 v

NP

3 d D N V] D

A the cat chases the dog @
0 1 2 3 4 5

20/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the] =4
woannT s =2
vVp — v np n — cat
v — chases k=3
1 2 3 4 5
0 d np
1 n
2 Y
[NP]
3 d D] D]
4 the cat chases the dog @
0 1 . 3 4 5

21/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the] =4
woan T do i=1
vVp — vnp n — cat
v — chases k=2
1 2 3 4 5
0 d np
ot “
2 \V;
Nz
3 d D N V] Dl
4 the cat chases the dog @

22/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the] =4
woan T do i=1
vVp — v np n — cat

v — chases k=3

1 2 3 4 5
0 d np
ot \
2 Y
N
3 d Dl N v Dl

4 the cat chases the dog @

23/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the
np —dn n — dog
vVp — v np n — cat
v — chases
1 2 3
B o]
1 n
2 Y
3
4

chases

the

dog

24/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the] =4
wdn n o li=o
vVp — v np n — cat
v — chases k =2
1 2 3 4 5
I
1 n
2 v
3 d v D “ D]
A the cat chases the dog @
. 1 2 3 4 5

25/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the] =4
woannT s =N
vVp — v np n — cat

v — chases k=3

1 2 3 4 5
|| [~
1 n
2 Y
[NP]

3 d D] D]
4 the cat chases the dog @

26/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the Lexical Entry: dog ((J=5 |, field chart(4,5))
np —dn n — dog
vVp — v np n — cat
v — chases
1 2 3 4 5
0 d np
1 n
2 Y
3 d D] D]
the cat chases the dog
4 n
0 1 2 3 4 5

27 /44

s—npvp d— the

np —dn n — dog

vVp — v np n — cat

v — chases
1 2 3 5

0 d np

1 n

2 Y
3 e
4 n

‘ Example Application of the CYK Algorithm |

‘ Example Application of the CYK Algorithm |

s—npvp d— the)
np — dn n — dog
vVp — v np n— cat -
v — chases k =3
1 2 3 4 5
0 d np
1 n

‘ Example Application of the CYK Algorithm |

s—npvp d— the]j=5
np —dn n — dog -
vVp — v np n — cat
v — chases k=4
1 2 3 4 5
0 d np
1 n

OV
o

np

‘ Example Application of the CYK Algorithm |

s—npvp d— the)
e Q=1
Vp —vnp n— cat
v — chases k =2
1 2 3 4 5
0 d np
K :
2 v vp
3 d np
4 n

‘ Example Application of the CYK Algorithm |

s—npvp d— the

np —dn n — dog

vVp — v np n — cat

v — chases
1 2 3 5
0 d np
i :

2 \ vp
3 np
4 n

‘ Example Application of the CYK Algorithm |

s—npvp d— the]j=5
e Q=1
vVp — v np n — cat
v — chases k=4
1 2 3 4 5
0 d np
i n
2 Y vp
3 d np
4 n

33/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the]j=5
e =0
vVp — v np n — cat
v — chases k=1
1 2 3 4 5
B o]
1 n
2 Y vp
3 d np
4 n

34/44

‘ Example Application of the CYK Algorithm |

s—npvp d— the)
RO =0
Vp —vnp n— cat
v — chases k =2
1 2 3 4 5
| | s
1 n
2 v vp
3 d np

S — np vp
np —dn
Vp — Vv np

‘ Example Application of the CYK Algorithm |

d — the
n — dog
n — cat
v — chases

np

vp

np

‘ Example Application of the CYK Algorithm |

s—npvp d— the]=5
AN nTe =0
vVp — v np n — cat
v — chases k=4
1 2 3 4 5
I s
1 n
2 Y vp
3 d np

37/44

‘ Dynamic knowledge bases in PROLOG I

e Declaration of a dynamic predicate: dynamic/1 declaration, e.g:
:— dynamic chart/3.

to store facts of the form chart (From,To,Category):

e Add a fact to the database: assert/1, e.g.:
assert(chart(1,3,np)).

Special versions asserta/1/assertz/1 ensure adding facts first/last.

e Removing a fact from the database: retract/1, e.g.:
retract(chart(1l,_,np)).

To remove all matching facts from the database use retractall/1

38/44

‘ The CYK algorithm in PROLOG (parser/cky/cky.pl) |

:— dynamic chart/3.
:— op(1100,xfx,’——->’).

% recognize(+WordList,?Startsymbol): top-level of CYK

recognize (String,Cat) :-
retractall(chart(_,_,_)),
length(String,N),
fill_chart(String,0,N),
chart (0,N,Cat) .

% chart (From,To,Category)
%» Operator for grammar rules

% initialize chart

%y determine length of
% call parser to fill
% check whether parse

recognizer

string
the chart
successful

39/44

% £ill_chart(+WordList,+Current minus one,+Last)
% J-LOOP from 1 to n

fill_chart([],N,N).
fill_chart([W|Ws],JminOne,N) :-
J 1s JminOne + 1,
lexical_chart_fil1(W,JminOne,J),
b
I is J - 2,
syntactic_chart_£ill(I,J),
b
£fi1ll_chart(Ws,J,N).

40/44

% lexical_chart_fill (+Word,+JminOne,+J)
%» £ill diagonal with preterminals

lexical_chart_fill(W,JminOne,J) :-
(Cat ---> [W]),
add_to_chart (JminOne,J,Cat),
fail
; true.

41/44

% syntactic_chart_fill(+I,+J)
% I-LOOP from J-2 downto O

syntactic_chart_£il1(-1,_) :- !.
syntactic_chart_£fill(I,J) :-
K is I+1,
build_phrases_from_to(I,K,J),
4
IminOne is I-1,
syntactic_chart_fill(IminOne,J).

42/44

%» build_phrases_from_to(+I,+Current-K,+J)
% K-LOOP from I+1 to J-1

build_phrases_from_to(_,J,J) :- !.
build_phrases_from_to(I,K,J) :-
chart (I,K,B),
chart(K,J,C),
(A -—-> [B,C]),
add_to_chart(I,J,A),
fail
; KplusOne is K+1,
build_phrases_from_to(I,KplusOne,J).

43/44

%» add_to_chart (+Cat,+From,+To): add if not yet there
add_to_chart (From,To,Cat) :-

chart (From,To,Cat) ,
|

add_to_chart (From,To,Cat) :-
assertz(chart (From,To,Cat) .

44/44

	Parsing
	Parsing Continuous Constituents
	CYK-Algorithm

