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Abstract

Dependency relations between words are increasingly recognized as an im-
portant level of linguistic representation that is close to the data and at the
same time to the semantic functor-argument structure as a target of syntac-
tic analysis and processing. Correspondingly, dependency structures play an
important role in parser evaluation and for the training and evaluation of tools
based on dependency treebanks. Gold standard dependency treebanks have
been created for some languages, most notably Czech, and annotation efforts
for other languages are under way. At the same time, general techniques for
detecting errors in dependency annotation have not yet been developed.

We address this gap by exploring how a technique proposed for detecting
errors in constituency-based syntactic annotation can be adapted to systemat-
ically detect errors in dependency annotation. Building on an analysis of key
properties and differences between constituency and dependency annotation,
we discuss results for dependency treebanks for Swedish, Czech, and Ger-
man. Complementing the focus on detecting errors in dependency treebanks
to improve these gold standard resources, the discussion of dependency error
detection for different languages and annotation schemes also raises ques-
tions of standardization for some aspects of dependency annotation, in par-
ticular regarding the locality of annotation, the assumption of a single head
for each dependency relation, and phenomena such as coordination.

1 Introduction

There is increasing interest in dependency annotation for natural language process-
ing, which can tap into the rich history of dependency-based linguistic analysis for
Slavic and other languages. Syntactic comparison measures based on constituency
bracketing have been recognized as problematic for the evaluation of parsers, and
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the focus has shifted to a key result of syntactic analysis, the functor-argument
structure, which dependencies capture (cf., e.g., Carroll et al. 2003, Lin 2003).
At the same time, direct dependency parsing approaches have been developed
(cf., e.g., Eisner 1996, Tapanainen and Järvinen 1997, Nivre 2006, McDonald and
Pereira 2006, Bick 2006). For both types of approaches, the dependency-based
evaluation of parsers and the training and evaluation of dependency parsers, the
availability of corpora with gold standard dependency annotation is crucial.

The annotation of gold standard corpora is generally the result of a manual
or semi-automatic mark-up process. The annotation thus can contain annotation
errors from automatic (pre-)processes, human post-editing, or human annotation.
The presence of errors in linguistic annotation has been shown to create problems
for both computational and theoretical linguistic uses of such corpora, from unre-
liable training and evaluation of natural language processing technology (cf., e.g.,
Padro and Marquez 1998, van Halteren 2000, van Halteren et al. 2001, Dickinson
and Meurers 2005b, Habash et al. 2007, Hogan 2007) to low precision and recall of
queries for already rare linguistic phenomena (cf., e.g., Meurers and Müller 2008).
Investigating the quality of linguistic annotation and improving the annotation and
the annotation schemes where possible is thus a key issue for the use of annotated
corpora in computational and theoretical linguistics. Even a small numbers of er-
rors can have a significant impact on the uses of linguistic annotation. For example,
Habash et al. (2007) compare Arabic parsing systems and find that the one which
initially had better results was actually worse when treebank errors were accounted
for. In another case, Hogan (2007) identifies specific types of coordinate phrases
which are inconsistently annotated. She points out that they cause problems for
training and testing and cleans up these cases to improve performance. When one
considers that linguistic annotation such as part-of-speech or syntactic annotation
is often used as input for further layers of annotation or processing, even a small
set of errors can significantly affect a higher layer. For example, the errors in syn-
tactic rules identified in Dickinson and Meurers (2005b) are often attributable to
erroneous part-of-speech annotation.

The idea that variation in annotation can indicate annotation errors has been
explored to detect errors in part-of-speech annotation (van Halteren 2000, Dickin-
son and Meurers 2003a) and, to a lesser extent, in syntactic annotation (Ule and
Simov 2004, Dickinson and Meurers 2003b, 2005a,b). But, as far as we are aware,
the research we report on here is the first general approach to error detection for
dependency treebanks, whose annotations are typically less local and also differ in
other interesting respects from constituency-based treebanks.1 While an error in

1Inter-annotator agreement testing and annotation specific validity checks are, of course, used
during the construction of such resources (cf., e.g., King et al. 2003, sec. 2.1), but we are not aware
of automated, general error detection approaches.

2



constituency annotation might reflect a bracketing decision without major conse-
quences for the interpretation of the sentence, incorrect dependency relations will
generally affect the interpretation of the sentence. On the other hand, dependency
annotation does not need to commit to certain attachment ambiguities plaguing
constituency annotation.

In this context it is also relevant that the current work on dependency annotation
builds on a range of long-standing linguistic traditions of analysis (e.g., Tesnière
1959, Mel’čuk 1988, Sgall et al. 1986, Hudson 1990), not a single accepted stan-
dard. While there are some fundamental assumptions that all dependency gram-
mar approaches share – such as the primacy of word-word relations and functional
structure – they can vary widely in other assumptions, and thus also in the resulting
annotations (cf, e.g., the discussion in Nivre 2005). Such divergence particularly
arises in the analysis of phenomena which run counter to the reliance on word-
word relations, such as in the analysis of coordination or adverbial scope, where
sentential adverbs need to be distinguished from those modifying only the verb.
For coordination, which we turn to in section 3.2, some analyses even go as far as
positing a limited amount of syntactic constituency (Hudson 1990). In a related
way, the tenets of some dependency approaches, such as the single-head constraint
also discussed in section 3.2 (cf, also Mel’čuk 1988, ch. 1), are relaxed in other
approaches, e.g., to explicitly encode all dependencies in control constructions (as,
e.g., in the TigerDB of Forst et al. 2004).

For the research on detecting errors in dependency annotation presented in this
paper, the fact that dependency analyses vary across different annotated corpora in
significant ways means that care must be taken to distinguish those aspects which
relate to dependency annotation in general from those where more specific assump-
tions are involved. In detecting problematic annotations in divergent corpora, the
error detection method to be presented also provides feedback on the further de-
velopment of dependency annotation schemes. In addition to its main focus on
developing a practical method for detecting errors in gold standard dependency
resources, this paper thus also contributes to advancing the understanding of de-
pendency annotation, its standardization, and its relation to constituency-based an-
notation.

2 Background: Variation detection

As starting point for developing an error detection method for dependency an-
notation, we use the variation n-gram approach for constituency-based treebanks
developed in Dickinson and Meurers (2003b, 2005a). The approach is based on an
efficient method for detecting strings which occur multiple times in the corpus with
varying annotation, the so-called variation nuclei. For example, Figure 1 shows the
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Figure 1: Bracketing error detected in the Penn Treebank

variation nucleus last month, which occurs twice in the Wall Street Journal portion
annotated in the Penn Treebank (Taylor et al. 2003).

Every variation detected in the annotation of a nucleus is classified as either an
annotation error or as a genuine ambiguity. The basic heuristic for detecting an-
notation errors requires one word of recurring context on each side of the nucleus.
The nucleus with its repeated surrounding context is referred to as a variation n-
gram. While the original proposal in Dickinson and Meurers (2003a) is to expand
the context as far as possible given the repeated n-gram, using only the imme-
diately surrounding words as context is sufficient for detecting errors with high
precision (Dickinson 2005, pp. 46, 81). This local context heuristic receives inde-
pendent support from current research on first language acquisition showing that
such context frames are used by infants during lexical category learning (Mintz
2003, 2006). Similarly, work on unsupervised grammar induction (cf. Klein and
Manning 2002) also emphasizes the importance of local syntactic context.

The approach can detect bracketing and labeling errors in constituency anno-
tation. The variation nucleus last month we saw in Figure 1 occurs once with the
label NP and once as a non-constituent, which in the algorithm is handled through
a special label NIL. As an example of a labeling error, the variation nucleus next
Tuesday occurs three times in the Penn Treebank, twice labeled as NP and once as
PP (Dickinson and Meurers 2003b).

The basic method for detecting annotation errors in constituency-based syntac-
tic annotation was extended to discontinuous constituency annotation in Dickinson
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and Meurers (2005a). Supporting discontinuity brings it in line with one of the
important characteristics of dependency annotation. In the next section, we turn to
a discussion of this and other key aspects of dependency annotation that an error
detection approach for dependency annotation needs to take into account.

3 Key aspects of dependency annotation

We discuss the error detection approach for dependency annotation on the basis
of three diverse dependency annotation schemes that have been used to annotate
corpora for three different languages: the Talbanken05 corpus of Swedish (Nivre
et al. 2006), the Prague Dependency Treebank (PDT 2.0) of Czech (Hajič et al.
2003), and the Tiger Dependency Bank (TigerDB) of German (Forst et al. 2004).

The Swedish treebank Talbanken05 is a reconstruction of the Talbanken76 cor-
pus (Einarsson 1976a,b), which consists of text drawn from written data (profes-
sional prose, student essays) and spoken data (interviews, conversations, debates).
After deepening the original grammatical function and flat phrase structure anno-
tation, it was converted to dependency structures (Nilsson and Hall 2005). Tal-
banken05 consists of a total of 21,571 sentences with approximately 320,000 to-
kens, which are annotated using 69 types of dependency relations. The original
corpus was manually annotated and has undergone a conversion process that is
“very reliable” (Nivre et al. 2006), resulting in a high-quality corpus.

The Prague Dependency Treebank (PDT 2.0, http://ufal.mff.cuni.cz/pdt2.0/) is
composed of text from newspapers, business weeklies, and scientific journals and
includes annotation on morphological, analytical, and tectogrammatical layers. We
focus on the analytical layer, a dependency graph representation of the surface syn-
tactic structure which distinguishes 28 types of dependency relations. It consists
of 1.5 million tokens in 88,000 sentences. The annotation is the result of manual
annotation dating back to 1996, as well as several annotation-specific error checks
(Hajič et al. 2001, secs. 3.2, 3.3), and it is generally regarded as being of very high
quality.

The German Tiger Dependency Bank (TigerDB) was semi-automatically de-
rived from the Tiger Treebank (Brants et al. 2002), a corpus of German newspaper
text taken from the Frankfurter Rundschau. The subsection of the Tiger Treebank
annotated in TigerDB includes 36,326 tokens in 1,868 sentences. The dependency
annotation in the TigerDB is based on the annotation scheme developed for the En-
glish PARC 700 Dependency Bank (King et al. 2003). The annotation scheme dis-
tinguishes 53 types of dependency relations, which are established between words
but also between sublexical and abstract nodes – an issue that we return to in sec-
tion 3.2.
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3.1 Overlap and contiguity in dependency vs. constituency treebanks

Let us start the discussion of the key properties of dependency annotation for our
work on error detection with a basic example. Example (1) from the Talbanken05
corpus illustrates the ordered relations between words that are encoded in a depen-
dency treebank.

(1)
DT SS DT OO

Deras utbildning tar 345 dagar
Their education takes 345 days

Each arc represents a relation from a head to a dependent, with the arrow pointing
to the dependent. The labels on the arcs distinguish the different types of dependen-
cies; here the label SS expresses that utbildning (‘education’) is the subject of tar
(‘takes’) and OO that dagar (‘days’) is its object; DT is a determiner dependency.

In comparing the properties of dependency annotation to the constituency tree-
banks for which the variation detection approach was developed, there are two is-
sues which are important to spell out here and to which we will return in section 4.
Firstly, there is what we will refer to as overlap. Two phrases in a constituency-
based representation never share any of their daughters unless one is properly in-
cluded in the other. In a dependency representation, on the other hand, the same
head may well participate in multiple dependency relations, causing dependency
pairs to overlap, i.e., to share exactly one token. In example (1), for example,
utbildning tar (‘education takes’) and tar dagar (‘takes days’) are two distinct de-
pendency pairs, which both contain the token tar (‘takes’). In a constituency tree,
tar would be part of the verb phrase tar 345 dagar and any other constituent in-
cluding tar either properly contains this phrase or is contained by it. In addition to
dependencies overlapping in the head token, in some dependency representations,
such as the TigerDB, overlap can also arise when a given token is a dependent of
multiple heads. We take a closer look at this issue in the discussion of the single-
head constraint in the next section.

Secondly, there is the issue of contiguity. Within traditional constituency frame-
works, the sisters in a local tree are contiguous, i.e., their terminal yield is a con-
tinuous string. For dependency annotation, on the other hand, a dependency graph
will often relate non-contiguous elements. In sentence (2), for example, the word
ger (‘gives’) is modified by med (‘with’), with a particle appearing in between.2

2Dependency labels used: PL = verb. part., PA = compl. of prep., AA = (other) adverbial
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(2)
SS PL AA PA

Handeln ger tillbaka med dem
Commerce gives back with them

While non-contiguity is common, a less frequent special case of non-contiguity
is non-projectivity. In non-projective annotation, dependency relation arcs cross.
The degree to which non-projectivity arises depends on the language and the un-
derlying analysis; a comparison is provided in Havelka (2007). Non-projectivity
requires special attention in dependency parsing (e.g., Nivre 2006, McDonald and
Pereira 2006), but we will see that for our error detection method the ability to deal
with non-projective annotations results from dealing with non-contiguous relations
in general.

3.2 Differences in annotation schemes and their impact

While the different approaches to dependency annotation share the properties men-
tioned in the previous section, they vary significantly in others (cf, e.g., Nivre
2005). Some of these differences can impact the variation n-gram approach to er-
ror detection – despite the fact that, as a data-driven method testing the annotation
consistency for comparable strings recurring in the corpus, it is largely independent
of the particular annotation scheme and language. Generally speaking, the method
depends on the assumption that the annotation labels are determined by the prop-
erties of the data unit being compared (i.e., the variation nucleus) and that some
relatively local context is sufficient to distinguish genuine ambiguities from varia-
tions which are annotation errors – two assumptions to which there are exceptions
in some dependency annotation schemes.3

Dependency relations encoded indirectly As just characterized, the variation
n-gram method relies on the assumption that the label of the variation nucleus can
be determined based on the recurring string, the nucleus surrounded by a limited
number of context words. One aspect of this strictly data-driven perspective is that
each dependency relation label is considered independent of the others—akin to
the well-known independence assumption for local trees in PCFGs (cf, e.g., Man-
ning and Schütze 1999, ch. 11). This is not the case, however, for certain aspects
of dependency treebanks where annotation decisions are based upon annotation
decisions elsewhere in the graph. We will use the term indirect to refer to those

3Related issues, of course, arise in other linguistic frameworks as well; given the focus of the
paper we here discuss them for dependency annotation only.
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annotations which are not determined by the two words being annotated but by
something beyond the direct dependency.

As an example for where indirect annotation affects the comparability of the
annotation for the same recurring string, consider the case of coordination. Coor-
dination is often given a special status in dependency representations, due to the
challenges it presents. In the PDT, for example, conjuncts are dependent upon the
conjunction and a special suffix is appended to their label. For example, the predi-
cate jsou (’are’) in (3a) selects its subject telefony (‘telephones’). But the same verb
in (3b) does not establish a direct dependency relation with its subject. Instead, it
selects a coordination, which then selects the subject dependent of the verb, using
the Sb label to which the Co suffix has been added. In other words, the Sb part of
the label indirectly encodes the subject relation for the verb and the Co part of the
label encodes the direct dependency on the coordination. As a consequence of this
setup, the subject telefony (‘telephones’) also receives two different labels in the
two examples, Sb in (3a) and Sb Co in (3b).

(3) a.
Atr Sb Pred AuxP Adv

Nejlevnějšı́ telefony jsou v Británii
cheapest telephones are in Britain

b.
AuxP Adv Pred Sb Co Coord Sb Co

Na pokojı́ch jsou telefony a faxy
in rooms are telephones and fax machines

The analysis for the labels of coordinated elements, using a Co suffix together
with an indirectly determined function, such as the Sb in the above example, is one
of several phenomena in which the dependency labels are not determined locally
in the PDT.

Another common example for such a phenomenon is the selection of prepo-
sitional phrase dependents, where the preposition always bears the special label
AuxP and the dependency label specifying the function of the prepositional phrase
is shown on the noun selected by the preposition.4 This is exemplified in (4) where
in (4a) the noun utkánı́ (‘game’) occurs with an attribute (Atr) dependent, but only
establishes this dependency indirectly through the preposition v (‘in’) as a depen-

4This indirect encoding is limited to the analytical layer of the PDT annotation. The more
theoretically-motivated tectogrammatical layer of the PDT annotates the relation between the head
of a preposition and its argument directly (Mikulová et al. 2006).
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dent with the special label AuxP.5 The corresponding case with an adverbial (Adv)
dependent that is indirectly selected is shown in (4a).6

(4) a.
AuxP Atr

utkánı́ v Brně
game in Brno
Noun Prep Noun

b.
AuxP Adv

zadržen v Brně
detained in Brno

Verb Prep Noun

Relevant in our context of determining which local contexts are sufficient for
identifying a label variation as an annotation error, several of these phenomena
can occur together in a single sentence so that a head can be several dependencies
removed from the dependency label it determines. Take, for example, the noun
sdruženı́ (‘branches’) in (5a). It in principle occurs with an attribute (Atr) depen-
dent, but in this sentence its direct dependent is the conjunction bearing the label
Coord, which then selects two prepositions with dependency label AuxP, which
then select the nouns Moravia and Slezsku, which bear the Atr label together with
the Co suffix. The head noun sdruženı́ thus is two dependencies removed from the
Atr label it selects.

(5) a.
Atr Atr AuxP Atr Atr Co Coord AuxP Atr Co

Oblastnı́ sdruženı́ ODS na severnı́ Moravě a ve Slezsku
regional branches of ODS in Northern Moravia and in Silesia

Adj Noun Noun Prep Adj Noun Conj Prep Noun

b.
AuxP Atr Adv Co Coord AuxP Adv Co

na severnı́ Moravě a ve Slezsku spácháno
in Northern Moravia and in Silesia committed

Prep Adj Noun Conj Prep Noun Verb

5Here and in other PDT examples where it is relevant, the bottom line shows the part of speech
encoded in position 1 of the morphological tag (cf. Hana and Zeman 2005, p. 15).

6An alternative to establishing such dependencies indirectly would be to analyze the noun as
a dependent of both the preposition and the noun/verb taking the prepositional phrase dependent.
There thus is a tradeoff between using indirectly encoded dependencies and relaxing the single head
constraint as two different options for encoding the dependencies for such phenomena.
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In (5b), we have the corresponding case with the verb spácháno (‘commit-
ted’), which in principle occurs with an adverbial (Adv) dependent, but in this
example only establishes this relation indirectly given the intervening coordination
and preposition nodes. Even though in both examples in (5), Moravě and Slezsku
appear in the identical recurring string na severnı́ Moravě a ve Slezsku, their de-
pendency label differs because of the indirect annotation scheme decisions.

It is important to keep in mind here that the issue discussed is not an idiosyn-
crasy of one specific dependency bank. The annotation of coordination and prepo-
sitional phrases intrinsically is a hard analytic issue for a dependency analysis (cf.,
e.g., the discussion in Nivre 2005, p. 11).7

While in general dependencies which are encoded indirectly can lead to low
precision for an error detection method which is based on identifying variation in
the annotation of locally identical strings, in the discussion of the results for the
PDT in section 5 we show that in practice this issue arises relatively infrequently
and that a local switch of dependency labels is sufficient to eliminate those false
positives.

Single-head constraint Returning to the issue of overlap, dependency annota-
tion schemes also differ in whether they assume a single head or not. Typically,
each dependent is required to depend on a single head. However, some depen-
dency annotation schemes allow for a word to be dependent upon multiple heads,
creating more overlapping structures. Example (6) from the TigerDB, translating
as ‘But who shall function as the referee?’, illustrates this situation.

(6)
SB MO DET OA OC INF

Wer aber soll den Schiedsrichter spielen ?
Who but shall the referee play ?

SB

In this sentence, the subject wer (‘who’) is analyzed as being dependent upon both
the modal verb soll (‘shall’), for which it is the syntactic subject, and the main verb

7Related issues can arise in a constituency analysis, as exemplified by the use of the CNP label
for coordinated noun phrases in the Tiger Treebank (Brants et al. 2002) or the use of topological field
nodes intervening between a head and its dependent in TüBa-D/Z (Telljohann et al. 2005). However,
indirect grammatical function assignment can be avoided in more cases given that a constituency
analysis can postulate additional constituency nodes to group the material which together realizes a
grammatical function.
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spielen (‘play’), for which it is a semantic argument.
In order to be able to work with a range of dependency treebanks, an error

detection method thus cannot assume single-headedness. Since our method deals
with each mapping from a nucleus to its annotation independently, the approach
is independent of the number of dependency relations a word participates in and
whether some of those relate it to different heads.

Level of abstraction Finally, dependency treebanks also differ in their relation-
ship to the surface string, particularly in their treatment of word forms and linear
order. A dependency analysis can involve unordered relations between lemmas, as
in the TigerDB, where lemmas and abstract nodes with or without lexical coun-
terparts are the elements involved in dependency relations, and the relationship to
the surface string must be re-created. Furthermore, some words, such as auxiliary
verbs functioning as tense markers, are left out of the dependency graph. An-
notating dependency relations for such abstract representations instead of for the
surface string is problematic for data-driven methods, such as the variation n-gram
approach. We return to the TigerDB and how the method can be applied to such
abstract representations in section 5.

4 Variation detection for dependency annotation

Having introduced the idea of variation detection for constituency-based annotation
and the aspects of dependency annotation of direct relevance in this context, we are
ready to connect the two by exploring what is involved in applying the variation
n-gram method to dependency annotation. There are two questions to consider:
Firstly, what constitutes the comparable recurring units of data that are annotated,
i.e., what are the variation nuclei for dependency annotation? Secondly, what are
appropriate and sufficient disambiguating contexts for distinguishing genuine am-
biguity from erroneous variation when dealing with dependency annotation?

4.1 Determining the variation nuclei

The starting point of determining the recurring comparable units which vary in
their annotation is straightforward: A dependency relates exactly two words, so
the method needs to investigate the mapping between a pair of words and their
dependency relation label.

Algorithmically, the variation n-gram approach for discontinuous syntactic an-
notation error detection (Dickinson and Meurers 2005a) is the approach we are
adopting, given that dependencies are not restricted to relate contiguous words.
Since we are dealing with labeled dependency pairs, the algorithm only needs to
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consider variation nuclei of size two. Before spelling out the algorithm, several
additional aspects need to be clarified, though, to which we turn in the following.

Encoding directedness of dependency relations Different from the category
labels of constituents, dependency arcs are directed. To encode which of the two
words is the head of the dependency, we encode the direction in the label, adding
an L in case the head is to the left and an R if it is to the right. For example, for
the Swedish sentence we saw in (1) on p. 6, we have the nuclei Deras utbildning
labeled DT-R, utbildning tar (SS-R), tar dagar (OO-L), and 345 dagar (DT-R).

With the dependency-annotated data encoded in this way, variation n-gram de-
tection can distinguish variation in dependency labeling (e.g., SUBJ-R vs. OBJ-R),
and variation in the determination of the head (e.g., OBJ-L vs. OBJ-R).

NIL occurrences Adapting the use of the special NIL label for bracketing mis-
matches in constituency-based annotation discussed in section 2, we can also detect
variation in dependency identification, i.e., the situation where two words which
are related by a dependency in one occurrence in the corpus are compared to an
occurrence of those words that is not annotated with a dependency (e.g., OBJ-R
vs. NIL). For example, the string in example (7) appears twice in the Talbanken05
corpus.8

(7) a.
RA DT DT PA HD HD

Backberger säger i sin artikel ’ Den heliga familjen . . .
Backberger says in her article ’ The sacred family . . .

b.
RA DT DT PA HD HD

Backberger skriver i sin artikel ’ Den heliga familjen . . .
Backberger writes in her article ’ The sacred family . . .

In one instance, sin (‘her’) is annotated as the determiner (DT) of artikel (‘article’);
in the other, there is no relationship between sin and artikel, as both are dependents
of another head. The method assigns the second occurrence the label NIL, mak-
ing it possible to detect a variation in dependency identification here, between the
labels DT-R and NIL.

The search for NIL occurrences of dependency pairs is restricted to words
found within the same sentence, given that dependency labels only make reference

8Here and in the rest of the paper, the two words in the variation nucleus are shown in boldface.
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to intrasentential relations. Additional restrictions could be imposed if additional
locality domains (e.g., clause boundaries) are annotated. One could also consider
using a notion like that of a span in Eisner (1996), in order to reduce the search
space for NIL nuclei, since spans delimit “grammatically inert” portions of the
sentence. Such a domain restriction, however, would limit us to finding only those
NIL nuclei that correspond to projective dependencies, as a word in the middle of
a span in the sense of Eisner (1996) cannot relate to a word outside that span.

Dealing with overlap In addition to taking into account the non-contiguity and
directedness of the dependencies, further differences between constituency and de-
pendency annotation also need to be accounted for when determining which oc-
currences of two words are comparable, i.e., which nuclei are worth inspecting.
The overlap of dependency relations mentioned in section 3 raises the question of
how to handle the annotations of type-identical overlapping pairs. For example,
consider the two objects chair of the verbal head showed in (8).

(8)
DO IO

She showed the department chair the beautiful old chair .

The pairs are type-identical and their head is the same token, showed. Clearly, such
type-identical overlapping relations should not be interpreted as nuclei that need to
be compared to determine whether there is variation between the two annotations.

Our solution to this issue, when multiple type-identical dependencies share
a token, is to consider all those dependency labels as a set. For example, for (8)
our algorithm considers a single dependency triple <showed,chair,{DO, IO}>. This
means that there is no variation within this example, but it goes further in being able
to handle multiple comparable dependents in different sentences. For example, if
sentence (8) occurs twice within the same corpus, we do not want to compare the
dependency relation with the direct object in one sentence to the relation with the
indirect object in the other. Thus, for overlapping type-identical dependencies,
the nucleus encodes the set of dependency labels for all occurrences anchored on
the same head token. Then, the set of labels are compared against another set
of dependency labels to determine if they are the same. This restricts variation
detection for those cases to nuclei which are meaningful to compare.

This solution will naturally not cover cases of variation across sentences, for
example, between a word being used as the DO of a verbal head in one sentence
and an IO of the same verbal head in another sentence. Note, though, that these
cases will be filtered out by the context heuristics in section 4.2. One could also
consider exploiting information about the types of common sister dependencies in
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order to define valid substitution sets of sisters (e.g., that DO/IO variation is often
acceptable), akin to defining valid substitution sets of mothers for constituency
annotation (cf. Dickinson and Meurers 2005b). We leave this for future work, but
note that it would not catch some cases that we currently identify.

Algorithm for identifying variation nuclei Having clarified the relevant issues
we need to take into account when adapting the variation n-gram approach to de-
pendency annotation, we are ready to spell out the algorithm for detecting the vari-
ation nuclei in dependency annotation.

1. Compute the set of nuclei:9

a) Find all dependency pairs, store them with their category label.

• The dependency relations annotated in the corpus are handled as
nuclei of size two and mapped to their label plus a marker of the
head (L/R).
• The labels of overlapping type-identical nuclei are collapsed into

a set of labels.

b) For each distinct type of string stored as a dependency, search for non-
dependency occurrences of that string and add the nuclei found with
the special label NIL.10

To obtain an algorithm efficient enough to deal with large corpora, we
adopt the following measures from Dickinson and Meurers (2005a):

• A trie data structure is used to store all potential nuclei and to
guide the search for NIL nuclei.
• The search is limited to pairs occurring within the same sentence.
• NIL nuclei which would be type-identical to and overlap with a

genuine dependency relation in the same sentence are not consid-
ered.11

2. Compute the set of variation nuclei by determining which of the stored nuclei
have more than one label.

9In Dickinson and Meurers (2003b, 2005a), this step is embedded within a loop over all con-
stituent sizes in the corpus, which is not needed here given that dependencies always relate exactly
two words.

10In other words, we only search for (potentially discontinuous) NIL nuclei which are type-
identical to genuine dependency nuclei, i.e., there is no NIL vs. NIL variation.

11Note that this step is distinct from the overlap of type-identical relations discussed above. The
issue here is limiting the number of NIL nuclei which need to be postulated.
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4.2 Determining appropriate contexts

Turning from the identification of variation to determining which of those varia-
tions constitute errors and which are genuine ambiguities, we need to determine
what kind of context is required to carry out this task for dependency annotation.
We here discuss three heuristics, which differ in interesting ways with respect to the
precision/recall tradeoff and thus become relevant in different situations (cf. sec-
tion 5).

Non-fringe heuristic The variation n-gram method for constituency-based an-
notation we use as a starting point uses identical surrounding words as context:
variation nuclei on the fringe of comparable strings are not reliable as indicators
of errors since they lack context on one side. This basic idea is also applicable to
dependency annotation. Following Dickinson and Meurers (2005a) we will refer
to the heuristic requiring one element of context around each word in the nucleus
as the non-fringe heuristic. For the two word nuclei used in dependency annota-
tion this means that an element of a nucleus can be non-fringe by being next to a
context word or next to the other word in the nucleus.

Given that this heuristic requires identical words surrounding each word in the
nucleus, it detects errors with high precision.

NIL internal context heuristic A less stringent context requirement for depen-
dency annotation can increase recall by not requiring context around every word.
Dependency pairs are frequently realized non-contiguously, which gives the inter-
vening context an added importance for disambiguation. This is most prominently
the case for non-contiguous NIL pairs, i.e., the occurrence of two words in a sen-
tence which somewhere else in the corpus occur as a labeled dependency. As
explained in the discussion of example (7) in the previous section, such NIL pairs
are important to take into account to detect errors in dependency identification.
But without context heuristics, the number of NIL nuclei identified this way is
high, containing many false positives. Identifying only the two nucleus words by
themselves, in particular when they can occur non-contiguously, is insufficient for
detecting errors with high precision. We therefore require NIL nuclei to have the
same internal context as an annotated dependency, a restriction not imposed when
comparing two nuclei with annotated dependencies. We refer to this as the NIL
internal context heuristic.

TigerDB example (9) illustrates this with the nucleus Wirtschaftspolitik warten.
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(9) a.
SB OP OBJ OC INF

“ Wirtschaftspolitik läßt auf sich warten ”
economic policy lets on itself wait

b.
DET SB OP OBJ OC INF

Die Wirtschaftspolitik läßt auf sich warten .
the economic policy lets on itself wait

‘Economic policy is a long time coming.’

In (9a), Wirtschaftspolitik (‘economic policy’) is the subject of warten (‘wait’),
while in (9b) there is a NIL nucleus. The internal context between Wirtschaftspoli-
tik and warten is identical (läßt auf sich), whereas the outer context differs. If one
requires a context consisting of identical words around every nucleus word, our
method would miss this case because the outer context is not the same. The NIL
internal context heuristic allows the method to detect cases such as this one.

At the same time, the NIL internal context heuristic successfully prevents false
positives which would result from relaxing the context requirements further. Con-
sider the examples in (10), where we have a relation with den (‘the’) as the deter-
miner of Staaten (‘States’).

(10) a.
MO DET MO OBJ

in den Vereinigten Staaten
in the United States

b.
MO DET MO NUMBER OBJ OP DET MO OBJ

in den vergangenen zehn Jahren an die Vereinigten Staaten
in the past ten years to the United States

Without requiring the presence of the internal context, the error detection method
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would posit a discontinuous nucleus den Staaten with label NIL for example (10b).
The internal context filter eliminates this variation.

Dependency context heuristic Turning from the distributional context to a type
of context making reference to the dependency annotation itself, consider that the
head of a variation nucleus typically will be a dependent of another word in the rest
of the sentence. We can use this dependency annotation connecting the variation
nucleus to the rest of the sentence as a valuable, disambiguating context given
that the two words in a variation nucleus are more likely to be annotated the same
way if the head of the variation nucleus has the same function in the sentence in
each occurrence. This is particularly relevant in dealing with the issue of indirect
dependency annotation discussed in section 3.2. We thus introduce the dependency
context heuristic which encodes the idea that if the head of a variation nucleus is
being used in the same function in all instances, the variation in the labeling of the
nucleus is more likely to be an error. Conversely, when the head is used differently,
it is more likely a genuine ambiguity.

For example, consider the two examples in (11) involving the variation nucleus
den ena being annotated as DT-R in example (11a) but not being annotated as a
dependency pair, i.e., a NIL nucleus, in (11b).

(11) a.
DT PA ++ DT CC

i den ena eller andra formen
in the one or other form

b.
DT DT ++ CC PA

i den ena eller båda färdriktningarna
in the one or other directions

Under the analysis of coordination in the Talbanken05 corpus, this is acceptable
variation, despite occurring in the identical string context (i den ena eller). Be-
cause ena has different functions—it is the place adverbial (PA) dependent of i
(‘in’) in (11a) and a determiner (DT) dependent of färdriktningarna (‘directions’)
in (11b)—the dependency context heuristic correctly categorizes it as a genuine
ambiguity instead of as an annotation error.

While this heuristic increases error detection precision, it in principle can also
decrease recall given that variation nuclei which differ in the selection of the head
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(i.e., in the directedness of the relation) will not be detected using this heuristic.
However, in practice we found that errors in directedness are very rare.12

5 Results and Discussion

Having defined variation nuclei and appropriate contexts for dependency annota-
tion, we test the approach to error detection with the three corpora introduced at
the beginning of section 3: the Talbanken05 corpus of Swedish, the Prague Depen-
dency Treebank of Czech, version 2.0 (PDT2.0), and the Tiger Dependency Bank
(TigerDB) of German. The underlying error detection method is the same in all
cases, but we varied the heuristics used as discussed below. While detecting in-
stances of errors as such is a primary goal, we also want to emphasize the feedback
on the annotation schemes that such error detection work can provide – an aspect
largely ignored in previous error detection research.

Talbanken05 We applied the error detection algorithm defined in section 4.1
to the written half of the Talbanken05 corpus (sections P and G), consisting of
197,123 tokens in 11,431 sentences. The algorithm returned 210 different varia-
tion nuclei with at least one word of context around each word in the nucleus, i.e.,
using the non-fringe heuristic.13 To evaluate the precision of the error detection
method, each of these cases was hand-inspected by an independent researcher fa-
miliar with the annotation scheme. In 92.9% (195) of the detected cases, a detected
variation pointed to one or more errors, identifying a total of 274 token errors. For
such a small corpus with a manual annotation known to be of high quality, this
is a significant number of errors, and they are detected with better precision than
previously found for constituency treebanks for English and German (Dickinson
and Meurers 2003b, 2005a). Furthermore, the method points not only to specific
errors, but to potential classes of errors that a human annotator can recognize and
use to detect and correct a higher number of annotation errors – something the in-
dependent Talbanken researcher evaluating the results confirmed as indeed being
the case in practice.

Turning to an analysis of the nature of the errors detected by the method, of
the 274 token errors, 145 were instances of one label being incorrectly used for
another. 129 were instances where there was an error in identifying the presence
of a dependency, i.e., involving a NIL nucleus, with either the treebank label being

12For the Talbanken05 corpus we detected no such cases, in the PDT there was a single case, and
in the TigerDB we found four such case.

13The results reported here are for a version of the algorithm which does not distinguish between
heads and dependents in testing whether two n-grams cover the same tokens; additional variations
can be found by adding that distinction.
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incorrect or the NIL label incorrect. Errors in labeling of a dependency and errors
in identifying a dependency arguably are both important to detect; they seem to
occur about equally often; and the method successfully identifies both.

Examining these 274 token errors more closely, we find some consistent pat-
terns. For one thing, determiners (DT) are far and away the most problematic cate-
gory: 30 token errors are an incorrect use of DT, and 15 errors need to be corrected
to DT, reflecting the fact that in Swedish a broader range of words can function as
determiners. For another, 20 errors featured an erroneous complement of prepo-
sition (PA) needing to be changed to the other head (HD) category; importantly,
both of these categories were introduced in the conversion from Talbanken76 to
Talbanken05, and our method pinpoints these automatic conversion problems. Fi-
nally, in the verbal domain, adverbials are involved in more errors (73 cases) than
arguments, i.e., subjects and objects (31 cases).

While 92.9% error detection precision clearly is high enough to drive an effec-
tive process correcting the annotation errors, it still is interesting to also determine
the impact of the dependency context heuristic discussed in section 4.2. After
adding this heuristic, the number of variation nuclei found by the method drops to
98, of which 95.9% (94) contain at least one error. Adding the dependency context
heuristic thus increases precision, but at the cost of over 50% drop in recall.

PDT2.0 For the PDT2.0, we ran the error detection method on the subset of sen-
tences in the full/amw section of the corpus, containing 38,482 sentences (670,544
tokens), almost half of the 88,000 sentences with annotation on the analytical layer.

Using the non-fringe heuristic, requiring one word of context around each word
in the nucleus, the algorithm detects 553 cases. To focus on cases of linguistic
variation, all instances where the variation involved punctuation were removed,
which leaves 426 variation nuclei.

In our discussion of the differences between annotation schemes in section 3.2,
we mentioned that the PDT annotation scheme includes a number of dependency
labels which are indirectly determined. A researcher familiar with the PDT annota-
tion scheme hand-inspected a sample of the detected cases and confirmed in prac-
tice that a significant number of false positives were due to the indirectly-encoded
dependencies involving AuxP and AuxC relations. To eliminate those cases before
the hand evaluation of the error detection results by an independent researcher, we
switched the relation between the preposition and its argument with the AuxP re-
lation between the preposition and its head, thus directly encoding the dependence
on the category of the head (noun vs. verb), as shown in (12) next to the original
annotation repeated in (13).
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(12) a.
Atr AuxP

utkánı́ v Brně
game in Brno
Noun Prep Noun

b.
Adv AuxP

zadržen v Brně
detained in Brno

Verb Prep Noun

(13) a.
AuxP Atr

utkánı́ v Brně
game in Brno
Noun Prep Noun

b.
AuxP Adv

zadržen v Brně
detained in Brno

Verb Prep Noun

Modifying the encoding of AuxP and the parallel AuxC relations in this manner
reduces the number of variations detected by the algorithm to 354 cases. The
independent researcher familiar with the PDT annotation scheme hand-inspected
the detected cases and determined that there were annotation errors in 59.7% (205)
cases, corresponding to 251 token errors.

Inspection of the false positives revealed that 49.0% (73) are due to indirect
annotation scheme decisions other than AuxP or AuxC, namely the annotation of
coordination discussed in section 3.2. Modification of the annotation scheme to
reduce or eliminate the use of indirectly determined dependency labels thus would
significantly improve the precision of the error detection method – and of other
data-driven methods making use of the annotation.

Further analysis of the other false positives provided further interesting feed-
back on the annotation scheme. For example, a number of the variations detected
by the method are due to permitted annotator variation, such as with the depen-
dency relations AdvAtr and AtrAdv used when a phrase could be interpreted either
as an adverbial of the predicate (Adv) or as an attribute of a lower node in the tree
(Atr). AtrAdv is used when the annotator has a preference for the Atr interpreta-
tion; AdvAtr is used when Adv is preferred, and the annotation guidelines state that
“This decision is difficult to describe in general terms, it will depend on the annota-
tor’s attitude” (Hajič et al. 1999, p. 57). If such subjective annotation decisions are
indeed a useful component of the annotation scheme, it would be straightforward
to automatically eliminate such permitted variation from the set of variations found
by the error detection method.

Looking at the nature of the errors detected, we found a small change from
the Talbanken05 results. A higher percentage of the 251 tokens featured a labeling
error, 60.6% (152 instances). In 99 instances, there was an error in identifying
the presence of a dependency, nearly evenly split between the treebank label being
incorrect (50) and the NIL label incorrect (49).

Finally, we again investigated the impact of another context heuristic on the er-
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ror detection results. Given the 59.7% precision with the non-fringe heuristic, we
were interested in whether adding the dependency context heuristic would improve
the error detection precision. We found that adding this heuristic narrowed the 354
variations down to 222 cases which have the same dependency context in all in-
stances. Of these 222, 61.7% (137) were determined to be errors. The dependency
context heuristic thus is not effective for improving error detection precision in this
corpus.

TigerDB The TigerDB consists of only 1,868 sentences drawn from the Tiger
Treebank. As discussed in section 3.2, the annotation is based on lexemes as well
as on abstract nodes, and so the word-word dependencies are only a subset of the
dependencies in TigerDB. To make it comparable with the other dependency anno-
tations, encoding dependencies between words, we only used the 1,567 sentences
(29,373 tokens) of the TigerDB with lexically-rooted dependency structures and
examined only dependencies between words, thus ignoring all abstract and sublex-
ical nodes in the determination of the variation nuclei.14

The abstractness of the annotation of the TigerDB was already mentioned in
the discussion of the differences between dependency annotation schemes in sec-
tion 3.2, so let us be explicit about where it played a role for the error detection
method. Firstly, the TigerDB itself does not directly encode the original lexical
items, so we used the TigerDB token numbers to align each word-word depen-
dency from the TigerDB with the surface string from the original Tiger treebank.
Secondly, some words in the surface string are not annotated on the word level
of the TigerDB. Some kinds of tokens are encoded as features (e.g., auxiliaries
appear as tense features), others as abstract nodes (e.g., conjunctions), and some
are not annotated at all (e.g., punctuation). However, since the variation detection
method examines each dependency relation separately, it is not necessary for the
dependency graph to be connected or for every word to be annotated. Unanno-
tated words still play a role as context words, though, so that obtaining the surface
form and order of the words from the original Tiger treebank, as we have done, is
necessary.

Given the very small size of the corpus, the method detects only three varia-
tion nuclei when the non-fringe heuristic is used, i.e., when one word of identical
context is required around the nucleus. All of the detected variation arises from
annotation errors, but it clearly is crucial to explore alternate context requirements
in order to improve recall. If no context is required at all, we obtain 1,060 variation
nuclei. Applying only the NIL internal context heuristic discussed in section 4.2,

14Sublexical nodes occur in the TigerDB in the analysis of compound words. The final word
in the compound is annotated as a lexical node and participates in word-word dependencies in the
sentence, while the relationships within the compound are annotated using sublexical nodes (and
thus are ignored by the error detection method).
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the method detects 276 cases. We examined the cases and found that 48.1% (133)
contain at least one error, corresponding to 149 token errors.

Looking at the nature of the errors detected for this corpus, of these 149 token
errors, only 46 involved a labeling error, while 103 were an error in the identifica-
tion of a dependency (of which 47 were incorrect labels and 56 incorrect NIL nu-
clei). Detecting twice as many dependency identification errors than dependency
labeling errors contrasts with the results for the previous two corpora, where we
found about the same number of dependency labeling and dependency identifica-
tion errors (Talbanken05) or about 10% more labeling errors (PDT2.0). We inter-
pret this as reflecting the fact that the TigerDB was semi-automatically constructed
from another representational framework, LFG f-structure representations which
were disambiguated using a broad-coverage LFG parser. Given the wider range
of representational options, the identification of the lexical dependencies seems to
have suffered.

In terms of a qualitative analysis of the errors detected, some common patterns
can be observed in the annotation errors detected by our method. Firstly, consis-
tent tokenization is a significant problem for multi-word expressions and proper
names. For example, some instances of Den Haag (‘The Hague’) and zur Zeit (‘at
that time’) are analyzed as single tokens while other instances of those expressions
are annotated as several tokens. Secondly, the distinction between prepositional
arguments and modifiers is a source of significant variation in the annotation. For
example, in the expression Bedarf an X (‘demand for X’), the prepositional phrase
beginning with an was annotated as a modifier in one instance and as a preposi-
tional object in another.

Turning to the false positives produced by the error detection method, we found
genuine scope ambiguities with nur (‘only’) and auch (‘also’) and ambiguous
words such as die, which can be an article, a relative pronoun, or a demonstrative
pronoun. Such ambiguous words could be disambiguated based on their part-of-
speech tags, which would significantly reduce the number of false positives.

Finally, we tested the effect of the dependency context heuristic. When apply-
ing that heuristic to the output of the NIL internal context heuristic, we find 89 vari-
ations with 64.0% precision. The drop in recall thus is significantly smaller than
for the non-fringe heuristic applied to this corpus, with a clear increase in preci-
sion over the NIL internal context heuristic baseline. While this is the biggest gain
in precision for the dependency context heuristic among the three treebanks, one
needs to keep in mind that in the other two cases the dependency context heuristic
only came into play after the non-fringe heuristic had already been applied.
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6 Extensions and Alternatives

While the method successfully detects errors in a range of dependency treebanks,
it is interesting to consider whether the recall of the method can be increased.
A straightforward extension is to abstract from the word nuclei to distributional
classes, i.e., POS tags (Boyd et al. 2007). While worth pursuing, this would require
significant adaptations of the method in order to maintain adequate precision; Boyd
et al. (2007), for example, develop three new heuristics in order to overcome the
low error detection precision otherwise resulting from abstracting to distributional
classes.

Another possibility for increasing recall would be to use more sophisticated
machine learning methods and allow more features into the model, as opposed to
using the actual words as nuclei and surrounding context words. The variation n-
gram method is essentially a form of nearest neighbor classification, with a strict
notion of neighbor (i.e., exact string match); relaxing the definition of a neighbor
could lead to improved recall. In fact, there has been some work using a represen-
tation similar to ours for dependency parsing in a memory-based learning (MBL)
framework: Canisius et al. (2006) treat dependency parsing as a classification prob-
lem where two words need to be mapped to a label, potentially one representing
no relation (cf. our NIL label). While exploring the relation between the variation
n-gram method and more general methods like MBL could be fruitful, it needs to
be approached with caution, as the success of identifying inconsistencies relies on
a data representation which predicts the same class with high precision. As men-
tioned above, the more general the representation, the more likely we will have low
precision. van Halteren (2000), for example, only obtains 13-20% error detection
precision by examining disagreements between a tagger and a benchmark corpus.
Likewise, Blaheta (2002) finds 18% precision for function tag disagreements. To
extend the variation n-gram method to more general nearest neighbor models, the
essential work lies in selecting features which predict consistency without over-
flagging.

Other machine learning methods could also be attempted, such as outlier de-
tection.15 In addition to model selection, feature selection is again critical: for
POS annotation, Eskin (2000) uses anomaly detection to find errors and has both
lower precision and recall than the variation n-gram method on the same corpus.
The kinds of errors that human annotators make—and which the variation n-gram
method detects—tend to be errors which reflect a misunderstanding of the anno-
tation scheme or are simply difficult to disambiguate; outlier detection seems less
optimized for detecting such types of errors.

15Another perspective would be that of a noisy channel model; however, the lack of a training
corpus with annotated errors (for each of the corpora considered here) makes it difficult to estimate
the parameters of the error model.

23



7 Summary and Outlook

We developed a general, automatic method for detecting annotation errors in cor-
pora with dependency annotation. Building on the variation n-gram method for
constituency-based annotation (Dickinson and Meurers 2005a), we contrasted rel-
evant properties of constituency-based and dependency-based annotation to define
variation nuclei and disambiguating contexts which account for the properties of
overlap and non-contiguity in dependency annotation. To the best of our knowl-
edge the resulting method is the first general approach to detecting errors in de-
pendency annotation. Experiments on three high-quality dependency treebanks
demonstrate the effectiveness of the method and its ability to provide relevant feed-
back on the annotation schemes.

Given that the method relies upon inconsistently-annotated recurring data, it
works best for large treebanks where the same words occur multiple times. While
this is a potential limitation of the method, it is important to emphasize that the
method successfully discovers cases which are difficult to distinguish or insuffi-
ciently documented. In other words, as mentioned before, the method points not
only to specific errors, but to classes of errors, which annotators can use to guide
the detection of additional errors, unclear annotation scheme decisions, or missing
annotation manual documentation for difficult cases.

In terms of highlighting prominent patterns of inconsistency, a particular case
caught by our constraints deserves attention here, namely variations involving NIL
nuclei, i.e., cases where a pair of words has not been correctly identified as a de-
pendency. The interpretation of a NIL nucleus for dependency annotation is quite
different from that of constituency annotation: with constituency, a NIL nucleus
might mean that a structure was simply flatter than it should have been. With de-
pendency annotation, however, an erroneous NIL nucleus means not only that the
pair of words are wrongly annotated, but that there is at least one other error in the
sentence (assuming single-headedness): the word that should be the dependency
is incorrectly the dependency of another word. Thus, investigating sentences with
erroneous NIL nuclei will generally lead to the identification of multiple errors.

In future work it would be interesting to explore how one could generalize the
notion of the variation nucleus and the disambiguating context to more abstract
features, e.g., encoding a combination of the lemma and morphological informa-
tion or part of speech, in order to increase the recall of the method (cf. Boyd et al.
2007). With such generalizations to both the nuclei and the contexts, we envisage
that the method could also become applicable to related annotation levels, such as
the predicate-argument structure and other semantic levels for which annotation
efforts are becoming increasingly prominent (cf., e.g., Baker et al. 1998, Palmer
et al. 2005).
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Prague Dependency Treebank: A Three-Level Annotation Scenario. In Abeillé
(2003), chap. 7, pp. 103–127. URL http://ufal.mff.cuni.cz/pdt2.0/publications/
HajicHajicovaAl2000.pdf.
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ÚFAL MFF UK, Prague, Czech Republic. URL http://ufal.mff.cuni.cz/pdt2.
0/doc/manuals/en/a-layer/pdf/a-man-en.pdf. English translation by Zdeněk
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