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1 Introduction and Motivation

Annotated corpora are essential for training and testing algorithms in natural lan-
guage processing (NLP), but even so-called gold-standard corpora contain a sig-
nificant number of annotation errors (cf. Dickinson 2005, and references therein).
For part-of-speech annotation, these errors have been shown to be problematic for
both training and evaluation of NLP technology (van Halteren 2000; Padro and
Marquez 1998; van Halteren et al. 2001; Květǒn and Oliva 2002). But only little
work has been done on detecting errors in syntactic annotation (Ule and Simov
2004; Dickinson and Meurers 2003b, 2005), and the effect of the errors detected
on the uses of such corpora has not been systematically explored.

In this paper, we describe a new method for finding errors in treebanks and
demonstrate the effect of such errors on NLP technology. Similar to the work in
Dickinson and Meurers (2003b, 2005)—where multiple occurrences of the same
string in identical contexts are found with varying labels—the approach presented
here is based on the detection of inconsistencies; but instead of focusing on the
consistent assignment of a label to a string, we here investigate the consistency
of labeling within local trees. In section 2, we describe the new method, and we
show the results of applying it to the Wall Street Journal corpus in section 3. After
discussing ways to automatically identify individual erroneous rules in section 4,
we show in section 5 that eliminating the detected errors from the training data of
a probabilistic context-free grammar (PCFG) parser improves its performance.

2 A new error detection method

Most natural language expressions are analyzed as endocentric, i.e., a category
projects to a phrase of the same general category. For example, an adjective will



project to an adjectival phrase. This assumption is directly encoded in the widely
adopted X-bar schema (Jackendoff 1977), a generalization over phrase structure
rules, and similar generalizations are encoded in virtually all constituency-based
syntactic frameworks. An interesting effect of this organization of constituent
structure is that one can generally determine the syntactic category of the mother
based on the categories of the daughters. We thus propose to systematically search
for variation in the mother categories dominating the same daughters in order to
find erroneous annotation in local trees.

More concretely, to identify potentially erroneous rules, we extract all local
trees from a treebank and index them by the daughters list. For each list of daugh-
ters (consisting of part-of-speech labels for lexical daughters and syntactic category
labels for phrasal daughters) the set of immediately dominating mothers is deter-
mined. If this immediate dominance (ID) set has more than one element, we will
say that a daughters list shows ID variation and interpret it as an indication of a
potential error. Note that this approach turns the usual conceptualization of local
trees as rules on its head: instead of looking for which daughters can expand a fixed
mother category, we are fixing the daughters and asking which mother categories
can dominate these daughters.

Let us illustrate the idea with an example from the Wall Street Journal (WSJ) as
annotated in the Penn Treebank 3 (Marcus et al. 1993). The daughters list  
 (adverbial phrase, past participle, noun phrase) occurs 167 times in the WSJ,
with two distinct mother categories:  (verb phrase, 165 times) and  (prepo-
sitional phrase, 2 times). Based on the endocentricity considerations mentioned
above, a past participle verb () is expected to project to a verbal category, such
as , but not to a —and indeed the two trees dominated by  turn out to be
incorrect.

The same underlying idea is reflected in projects such as the CCGbank (Hock-
enmaier and Steedman 2005), a categorial grammar style annotation derived from
the Penn Treebank, which fixed some errors present in the original treebank. For
this purpose, specific rules such as the following are written to identify and fix
particular patterns (Hockenmaier and Steedman 2005, p. 94): “Under , if the
adverb has only one child, and it is tagged as , change it to . This is a
tagging error, and we do not want unknown s to have adverbial categories.”
Likewise, Blaheta (2002) deals with hard cases, such as the distinction between
preposition (), adverb (), and particle (), using rules of the form “If an 
is occurring somewhere other than under a , it is likely to be a mistag.” While
the rules used in these approaches reflect the assumption of endocentricity that our
approach is based on, we propose to search for all such endocentricity violations,
and our method detects such violations automatically, instead of being based on
human inspiration encoded in hand-written rules.



3 ID variation in the WSJ and the errors it points to

Running the algorithm sketched above on the entire WSJ corpus as annotated in
the Penn Treebank 3, we obtain 844 distinct lists of daughters which are assigned
more than one mother category in the corpus.

To investigate how many of these variations in mother category point to errors,
we randomly sampled 100 of these daughters lists and manually evaluated for each
whether it points to an error, a genuine ambiguity, or whether it was unclear ac-
cording to the annotation guidelines. We only count a daughters list as pointing
to an error if for (at least) one of the mothers in the ID set, every occurrence of
the daughters with that mother is an incorrect annotation. Of the 100 daughters
lists, 74 pointed to an error, 24 were genuine ambiguities, and 2 were unclear. We
therefore estimate that 74% (95% CI1: 65.4% to 82.6%) of the 844 daughters lists,
i.e., 625 (552 to 697) daughters lists, point to errors.

Since each pairing of a daughters list and a mother category, i.e., each distinct
local tree, constitutes an instance of a phrase structure rule, it is interesting to
know how many rules the 100 daughters lists with their possible mother categories
correspond to. For our sample of 100 daughters lists, there are 291 such rules, i.e.,
an average of 2.91 mother categories per ID set. For the full set of 844 daughters
lists, there are 2201 rules.

Zooming in on the 74 cases pointing to at least one erroneous rule, we want
to know how many of the elements of the ID set are errors (it could be anywhere
between one and the entire set, in which case none of the annotations are correct).
The 74 daughters lists correspond to 223 different rules; examining all instances
shows that 127 of the rules are errors. For example, the daughters list   (prepo-
sition/subordinating conjunction, noun phrase) has a nine element ID set (i.e., nine
different mothers in the corpus). Three of the elements (, , ) can indeed
occur as mothers for the daughters list  ; the six others (, , , , ,
) are never correct. The daughters list   thus points to six erroneous rules.
Based on 127 of 291 rules in our random sample being errors, we estimate 43.6%
(95% CI: 37.9% to 49.4%) of all rules in our variations to be errors, i.e., 961 (834
to 1087) of the 2201 rules.2

Analyzing the nature of the 74 daughter lists pointing to errors, the errors fall
into three groups: daughter label errors (38), mother label errors (41), and brack-
eting errors (13), with some errors having multiple causes. For example, take the
daughters list   when it is dominated by . In (1a), we see a bracketing error,

1Confidence Interval (Fleiss 1981).
2Because the data for rules is correlated within daughters (intracluster correlation = 0.01), the

standard error used in this confidence interval is adjusted by a variance inflation factor (design effect)
(cf. Fleiss 1981; Donner and Klar 2000).



where all of runs, up, and high commission costs should have been bracketed as
daughters of a mother . (The part-of-speech for up is also wrong; it should be
particle ().) In (1b), we see a mother category error: past it is not a verb phrase,
but a prepositional phrase (or perhaps adverbial). And in (1c), we find a daughter
error in the tagging of like as a preposition () when it is a verb ().

(1) a. Frequent trading runs [VP up/ [NP high commission costs]] .
b. Turkey in any event is long [VP past/ [NP it]] .
c. Mr. Friend’s client [. . . ] didn’t [VP like/ [NP the way 0 defense attorney

Tom Alexander acted during the legal proceedings *T*]] .

In addition to examining the number of types of local trees affected, we also
counted the number of local tree tokens which are error instances of the 100 ID set
sample. Of the 127 tree types (rules) which are erroneous, we find 847 occurrences
in the treebank.

3.1 Treebank issues

Given that our method is based on a linguistic consideration, it is useful to discuss
how the nature of the particular annotation scheme underlying the Penn Treebank
affects the precision of our error detection method.

Null elements In the Penn Treebank, null elements have been inserted into the
text so that certain phrasal categories retain their daughters even if they are not
overtly realized. At first glance, corpus annotation preserving daughter information
in this way seems to be useful for an error detection method like ours, which is
based on pairs of daughters lists and mothers. However, since our method starts
out from the daughters lists and compares which mothers can dominate a given
daughters list, the advantage of an annotation scheme including empty daughters
is relatively small and solely derives from the fact that including null daughters
in the annotation makes it possible to compare the mother categories assigned to
more instances of a given daughters list. Our approach thus is equally applicable
to treebanks which maintain a closer connection between the syntactic annotation
and the actual, overt surface realization.

Annotation violating endocentricity Some properties of the distinctions made
in the WSJ treebank cause problems for a method searching for endocentricity vi-
olations, namely aspects of the annotation scheme which directly violate endocen-
tricity. The guidelines for proper nouns (words annotated with the part-of-speech



tags  or ) are a good example of this. The rule for part-of-speech annota-
tion given in Santorini (1990, p. 32) is that capitalized words which appear in a
title should be tagged , as in example (2).

(2) A/ Tale/ of/ Two/ Cities/

In the syntactic annotation guidelines (Bies et al. 1995, p. 207), however, titles
are specified to be annotated like running text (and receive a  (title) function
tag), as illustrated in (3).3 As a result, the title Saved By The Bell is annotated in
the Penn Treebank as shown as in (4).

(3) [S−TT L [NP−S BJ *] [VP Driving [NP Miss Daisy]]]

(4) [NP−TT L−PRD [S [NP−S BJ *] [VP Saved/ [PP By/ [The/ Bell/]]]]

For our discussion, the key part of (4) is the annotation of Saved and the 
dominating it. Following the part-of-speech guidelines, Saved is annotated as
nominal () since it is part of a capitalized title. But the syntactic annotation
implicitly views Saved as a verb, so that it is annotated as part of a .

In sum, the mismatch between part-of-speech and structural syntactic anno-
tation results in a violation of endocentricity. Our method will thus flag such
examples as potentially erroneous, even though they are in accordance with the
guidelines—but one can argue that such a mismatch between the part-of-speech
and the syntactic guidelines is indeed something that would deserve to be revis-
ited.

4 From ID variation to automatic detection of erroneous
rules

In the previous section, we established that ID variation is useful for finding incor-
rectly annotated local trees and, by extension, the rules licensing these trees. To
make this observation practically useful for a large corpus, where hand validation
of all ID variation may not be feasible, we want to define a heuristic for automat-
ically detecting which of the elements in the ID set of a given daughters list are
errors and which are a part of a legitimate ambiguity. In other words, we have
to prune the set of acceptable treebank rules, akin to the task of post-pruning in
machine learning (e.g., Fürnkranz 1997).

3The title is analyzed as including an empty subject , so that the  function tag marking the
expression as a title is not attached to the , but the overall .



4.1 Frequency-based heuristics

Absolute number of rule occurrences For PCFG parsing, it is often assumed
that one can prune low-frequency rules without a degradation in parsing perfor-
mance (Gaizauskas 1995; Charniak 1996; Cardie and Pierce 1998) (although, for
certain kinds of trees, keeping low-frequency rules has been shown to improve per-
formance (Bod 2003)). The underlying idea is that rules which occur rarely are
more likely to have been a mistake, or if not a mistake, the probability of their
occurrence is so small as to be negligible. Based on this idea, one can create a
heuristic classifying the low-frequency ID variation categories as errors and the
frequent ones as genuine ambiguities.

We first isolated all rules in the ID sets which occurred only once, in order
to gauge how well this simple and commonly-used method of elimination works.
The results are given in Figure 1, for both type and token counts. We report how
many of the erroneous trees the heuristic identifies out of all the trees it identifies
(precision) and out of all the trees it should have identified (recall). Since each
rule we detect here occurs only one time, the type and token precision figures are
exactly the same.

Precision Recall
Types 74.75% (74/99) 58.27% (74/127)
Tokens 74.75% (74/99) 8.74% (74/847)

Figure 1: Evaluating the absolute frequency detection heuristic

Figure 1 shows high precision in that most single-occurrence rules are indeed
erroneous; but, because these rules occur once, the token recall is very low. There
are two main reasons that this predictor is insufficient. On the one hand, we find
examples of frequently-occurring rules which are incorrect, such as the rule →
 which appears 177 times, despite being wrong. On the other hand, there are
examples of infrequently-occurring rules which are correct; e.g., →   is correct
even though it occurs only once, in comparison to the same daughters occurring
393 times with  as the mother. Of the 99 rules in our set which occur once, a full
25 of them are correct.

Relative token frequency within ID sets The first heuristic considers only the
token counts and does not use information found within the variations, i.e., the ID
sets. To identify more rule occurrences which are wrong, we can use the properties
found in a variation to define a second frequency-based heuristic.

For each variation we took the total number of token occurrences of the daugh-
ters list and extracted all rules whose token occurrences were less than 10% of the



total number of instances with this daughters list. For example, there are 86 total
times in the corpus where the daughters list     appears bracketed as
a constituent.  (noun phrase) is the mother 83 times and thus is likely correct,
but  (unlike coordinated phrase) occurs only twice as mother of this daughters
list, or in 2.33% of the cases. Thus,  is flagged as a likely error, and indeed it is
erroneous.

As we can see in Figure 2, detecting erroneous rules with this 10% metric
obtains approximately 60% precision and 60% recall on types. But the token pre-
cision results are significantly worse.

Precision Recall
Types 60.47% (78/129) 61.42% (78/127)
Tokens 9.20% (499/5424) 58.91% (499/847)

Figure 2: Evaluating the relative frequency heuristic

Continuing with the     example, for instance, we find one occur-
rence of  as a mother, but this is correct. Having more of an impact, we find
rules under the 10% threshold despite being quite frequent; for example, the label
 (certain complex noun phrases) appears 102 times as the mother of  , but
 appears 5972 times as the mother of the same daughters, so the correct label 
is ruled out by being under the 10% mark. Even if we remove the single great-
est occurrence below the 10% threshold, the 4297 occurrences of →  , the
token precision is still only 44.28%. In sum, the second frequency-based heuris-
tic dramatically improves the recall, but for the reasons just mentioned, the token
precision suffers equally dramatically.

There are other possible frequency-based methods one can consider, such as
using a 10% threshold combined with an additional absolute threshold, but prelim-
inary results show this to be similarly unsuccessful. Frequency-based heuristics
can get high precision or high recall for the task of automatically detecting erro-
neous rules, but not both. Infrequent correct rules and frequent incorrect rules both
cause problems for frequency-based methods.

4.2 Adding an ambiguity measure

Instead of relying solely on low token frequency, we need another property which
makes detecting erroneous rules more accurate. But what kind of properties can
we use? To answer this question, consider the following example: regardless of the
number of token occurrences within a given variation,  and  can generally vary
between one another, since their distribution is dependent on the linguistic mate-
rial outside the constituent. The label  is used for noun phrases which share a



modifier with another noun phrase; if there is no shared modifier, then the identical-
looking constituent is labeled . So both categories label nominals, and both are
likely to occur with the same list of daughters.

To address such cases, we combine a token frequency measure with a measure
of how likely it is for two categories to be involved in a genuine ambiguity. We
start out with the token frequency measure evaluated in Figure 2, where for each
variation we take the total number of occurrences of a daughters list and mark as
errors all ID set elements whose token occurrences make up less than 10% of the
occurrences in their ID set. Then we restrict the set of potential errors identified this
way by eliminating all ID set categories which, when paired with the most frequent
category in the ID set, are among the top five variations in the corpus. For example,
for the daughters  , because the mother label  varies with  throughout the
corpus and the two are among the five most frequent mother categories occurring
together in ID variation sets, it is not flagged as an error.

For our sample of 100 ID variations, the resulting precision and recall figures
for automatically detecting which variations are errors are shown in Figure 3.

Precision Recall
Types 73.03% (65/89) 51.18% (65/127)
Tokens 65.59% (364/555) 42.98% (364/847)

Figure 3: Combining the relative frequency heuristic with an ambiguity measure

The combined heuristic results in an error detection precision approaching that
of the single occurrence heuristic we saw in Figure 1, while recovering nearly half
of the errors. We see an increase in precision from Figure 2 without a severe drop
in recall because the ambiguity measure lets us sort out highly frequent rules based
on something other than frequency. For instance, in the example of the daughters
list  ,  occurs 25 times as a mother but less than 10% of the time within
the variation; it would thus be incorrectly flagged as an error by the 10% heuris-
tic. However, because the pairing – is the most frequent overall ambiguity,
the rule is correctly not flagged as an error by the combined frequency/ambiguity
heuristic. On the other hand, with the daughters list  , the mother  occurs
170 times, but the pairing - is not one of the five most frequent, so this is
still flagged as an error, and correctly so.

While this heuristic for spotting erroneous rules in ID variation sets can clearly
be improved, the results are encouraging enough to try to measure the impact of re-
moving all rules detected by this method. At the same time, the above experiments
also showcase the difficulty of deciding automatically whether a given rule used in
a treebank is correct or not.



5 Impact of erroneous rule elimination on PCFG parsing

To test the impact of erroneous rules on PCFG parsing, we used the left-corner
parser LoPar (Schmid 2000),4 which has the nice property that, after training, one
can remove rules from the set of rules with their frequency counts. We split the
WSJ corpus into training (sections 2-21) and test (section 23) data. We compared
using all grammar rules from sections 2-21 of the treebank (All, 15,246 rules) with
using the set of rules from which we removed all rules flagged by the combined
frequency/ambiguity heuristic discussed in the previous section (Reduced, 14,798,
i.e., 448 rules were removed).5

The parsing results using these two PCFG models on the test data are given in
Figure 4, using the standard PARSEVAL measures (Black et al. 1991), i.e., brack-
eting precision, recall, and F-measure, for both labeled and unlabeled evaluation.6

Precision Recall Fβ=1

Lab. Unl. Lab. Unl. Lab. Unl.
All 70.39% 74.73% 67.31% 71.46% 68.82% 73.06%
Reduced 71.48% 75.68% 68.40% 72.42% 69.91% 74.01%

Figure 4: LoPar results using full and reduced rule set

The figure shows an improvement in precision and recall for the reduced rule
set. To see whether the improvement was due to chance or not, we computed the
significance of the precision and recall changes using stratified shuffling and found
that the changes are significant at the α = 0.001 level.7 In comparison, removing
low-frequency rules (Gaizauskas 1995; Charniak 1996; Cardie and Pierce 1998)
by eliminating all rules which occur only once resulted in some improvement over
the All baseline, but not significantly in the way our method does.

We conclude that the presence of erroneous rules in a grammar induced from
a treebank is harmful for parsing precision and recall and that targeting and elimi-
nating erroneous rules can improve parser performance.

4We used the unlexicalized, non-headed version. LoPar is available from http://www.ims.
uni-stuttgart.de/projekte/gramotron/SOFTWARE/LoPar-en.html

5Note that all rules flagged by the heuristic were removed, which includes some correct rules.
6Scores were computed using “evalb” (http://nlp.cs.nyu.edu/evalb/) by Satoshi Sekine

and Michael John Collins.
7This was carried out using Dan Bikel’s Randomized Parsing Evaluation Comparator (http:

//www.cis.upenn.edu/~dbikel/software.html).



6 Summary and Outlook

We presented a new method for detecting bracketing and labeling errors in syn-
tactic annotation and demonstrated its effectiveness for the WSJ treebank. The
method is inspired by the linguistic concept of endocentricity and its consequence
that the list of daughters in a local tree constrains the possible categories of the
mother in that local tree. To determine which mother node variations are likely to
be errors, we explored several heuristics and demonstrated that frequency by itself
is an insufficient predictor of errors. We instead proposed a heuristic combining
frequency with an expected-ambiguity measure and show that removing the rules
thus flagged as errors from the set of rules used by a PCFG parser leads to an
improved performance of the parser.

In the future, we intend to explore more complex heuristics to improve preci-
sion/recall of errors and to determine the exact effect of the treebank errors on the
PCFG parser. Given the well-known problems with the standard PARSEVAL mea-
sures (e.g. Carroll et al. 2002), we would also like to explore an evaluation with
other methods for comparing parser output. Along those lines, we would like to
perform a more robust error analysis, to determine the kinds of differences between
the parser output and the benchmark corpus, and to determine whether any pars-
ing errors are actually treebank errors. Finally, to explore the applicability of the
method, we intend to test it on other treebanks with different annotation schemes.
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