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Abstract

This paper is a contribution to the dis-
cussion of the choices involved in im-
plementing HPSG-based grammars and
their consequences on the modular-
ity and reusability of grammatical re-
sources, a central issue in multi-lingual
grammar development. Based on two
examples from the English Resource
Grammar (Flickinger et al., 2000), the
treatment of unbounded dependencies
and the analysis of optional arguments,
we show that adding recursive relations
to the expressive means available to the
grammar writer results in more modu-
lar, transparent, and compact grammars.
Given the frequent use of recursive rela-
tions in HPSG linguistics, grammar im-
plementations integrating such relations
can also be closer to the linguistic gen-
eralizations they intend to implement.

1 Introduction

The organization of a grammar in layered,
reusable structures is a key methodological issue
for multi-lingual grammar development, and ar-
guably for sustainable grammar implementation
efforts in general. This insight is reminiscent
of the development in computer science, where
as a result of the rise of software engineering in
the 70s (Naur and Randell, 1968; Parnas, 1975)
modular software written in high-level program-
ming languages replaced the low-level coding of

the early years. The abstraction and data encap-
sulation possibilities of high-level languages are
viewed as essential to obtain reliable, maintainable
and reusable software modules. As a result there
is general agreement that efficiency should not be
sought by coding at a low level but by intelligent
compilation from such a high-level language to ex-
ecutable code.

In this paper, we want to contribute to a discus-
sion of the expressive means of grammar imple-
mentation systems and how they can support the
formulation of modular grammatical constraints
that are reusable across languages. More specif-
ically, we want to investigate the usefulness of re-
cursive relational constraints for the implementa-
tion of HPSG-based grammars under this perspec-
tive. We base our discussion on two examples,
the encoding of the treatment of unbounded de-
pendencies and the analysis of optional comple-
ments, two key components of the English Re-
source Grammar (ERG, Flickinger et al., 2000) as
the largest HPSG-based grammar for English cur-
rently available. We contrast the ERG encoding
of these two issues with encodings that make use
of recursive relations, such as the append or union
relations frequently used in HPSG linguistics.1

2 Example 1: Unbounded dependencies

The English Resource Grammar (ERG) devel-
oped by the LinGO2 project is a freely avail-
able broad-coverage, HPSG-based grammar of

1Relational goals in HPSG linguistics are often written in
functional notation, e.g., 1 ⊕ 2 instead of append( 1 , 2 , 3 ).

2Cf., http://lingo.stanford.edu/
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English, which is implemented in the LKB sys-
tem (Copestake and Flickinger, 2000). The gram-
mar contains a wealth of analyses of English phe-
nomena, including a coverage of unbounded de-
pendencies that is based on the proposal in Bouma
et al. (2001) (henceforth: BMS). This proposal is
particularly interesting under an implementation
perspective since it replaces the need for compu-
tationally problematic empty elements with a lexi-
cal specification of ordinary, visible elements. The
so-called SLASH amalgamation constraint ensur-
ing this lexical specification is shown figure 1.
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Figure 1: SLASH amalgamation as defined in
Bouma et al. (2001, p. 20)

This constraint on words collects the information
about dependents of that word which are not lo-
cally realized. More concretely, the SLASH value
of each of the dependents on the DEPS list is col-
lected and the SLASH value of a word is specified
to be the union of the collected values (minus the
value of BIND, which in the following is ignored).
To express this generalization, the SLASH amalga-
mation principle of BMS in figure 1 makes use of
the recursive relations set union (∪) and set com-
plement (−), as well as the use of 1 , . . . , n to ex-
press a relation accessing the SLASH value of ev-
ery element of the DEPS list to be unioned into the
SLASH value of the word.

In an implementation platform that supports
relational constraints, the SLASH amalgamation
principle can be directly expressed. For exam-
ple, figure 2 shows how one can encode SLASH

amalgamation in the Trale system (Meurers et al.,
2002), an extension of the ALE parsing and gen-
eration system (Carpenter and Penn, 1996).3

The relational goal collect slashes collects
the SLASH values of all elements of the DEPS list.
Its definition in figure 3 specifies that it applies
when the list of dependents Deps is known to be

3This is essentially the encoding used in the Ger-
man HPSG-based grammar (Meurers and De Kuthy,
2001) developed in Trale as part of the SFB 340
Project B8 (http://www.sfs.uni-tuebingen.de/hpsg/archive/
sfb340-b4-b8/index engl.html).

word *> synsem:(loc:cat:deps:Deps,
nonloc:slash:Slash)

goal collect_slashes(Deps,Slash).

Figure 2: SLASH amalgamation in Trale

either an empty or a non-empty list. In the latter
case, coll slashes aux peels off one depen-
dent at a time and unions each Slash value to
obtain the list of all slashes.4

collect_slashes(Deps,Slash) if
when(Deps = (e_list;ne_list),

coll_slashes_aux(Deps,Slash)).

coll_slashes_aux([],[]) if true.
coll_slashes_aux([(nonloc:slash:Slash)

|Deps], AllSlash) if
collect_slashes(Deps,DepsSlash),
union(Slash,DepsSlash,AllSlash).

Figure 3: Definition of collect slashes

Since the ERG is implemented in the LKB
system, which does not support relational goals,
the SLASH amalgamation approach of BMS is
encoded by unfolding the relation between the
SLASH of a word and that of its dependents into
all of the different ways in which a word in this
grammar can select arguments. To be able to do
this, one needs to know more about the grammar
to be able to determine the maximal number of el-
ements for which the recursive relation needs to be
unfolded. For the ERG, the maximal number of ar-
guments of a word is four, so that SLASH amalga-
mation for arguments can be encoded by five type
constraints as shown in figure 4 on the next page.

Let us take a close look at what distinguishes the
two encodings in terms of generality, modularity,
and transparency:

First, the principle in figure 1 is more modu-
lar since it encodes the collection of the SLASH

value from any number of dependents without re-
quiring additional information about the specifics
of the grammar. Unfolding the principle into a
fixed number of disjunctive cases, on the other
hand, is dependent on such additional knowl-
edge, namely the maximal number of elements
that SLASH needs to be amalgamated from, which

4Note that one could also use a difference list encoding for
SLASH sets in order to avoid this call to the relation union, an
issue which is orthogonal to the one we focus on in this paper.
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basic_zero_arg := lex_synsem &
[ LOCAL.ARG-S < >,

NON-LOCAL [ SLASH 0-dlist ]].

basic_one_arg := canonical_synsem &
[ LOCAL.ARG-S < [ NON-LOCAL [ SLASH #slash ]] >,

NON-LOCAL [ SLASH #slash ]].

basic_two_arg := lex_synsem &
[ LOCAL.ARG-S < [ NON-LOCAL [ SLASH [ LIST #smiddle,

LAST #slast ]]],
[ NON-LOCAL [ SLASH [ LIST #sfirst,

LAST #smiddle ]]] >,
NON-LOCAL [ SLASH [ LIST #sfirst,

LAST #slast ]]].

basic_three_arg := lex_synsem &
[ LOCAL [ ARG-S < [ NON-LOCAL [ SLASH [ LIST #smiddle2,

LAST #slast ]]],
[ NON-LOCAL [ SLASH [ LIST #sfirst,

LAST #smiddle1 ]]],
[ NON-LOCAL [ SLASH [ LIST #smiddle1,

LAST #smiddle2 ]]] > ],
NON-LOCAL [ SLASH [ LIST #sfirst,

LAST #slast ]]].

basic_four_arg := lex_synsem &
[ LOCAL [ ARG-S < [ NON-LOCAL [ SLASH [ LIST #smiddle3,

LAST #slast ]]],
[ NON-LOCAL [ SLASH [ LIST #sfirst,

LAST #smiddle1 ]]],
[ NON-LOCAL [ SLASH [ LIST #smiddle1,

LAST #smiddle2 ]]],
[ NON-LOCAL [ SLASH [ LIST #smiddle2,

LAST #smiddle3 ]]] > ],
NON-LOCAL [ SLASH [ LIST #sfirst,

LAST #slast ]]].

Figure 4: The five type constraint encoding SLASH

amalgamation in the ERG6

in the ERG happens to be four.
Second, the fact that the principle of BMS can

collect the SLASH of any number of elements also
means that it is more general than the ERG en-
coding. Even with specific knowledge about the
grammar, it is impossible to capture the full gener-
ality of the BMS proposal in the ERG since the key
idea of that paper is to generalize over adjunct and
argument extraction—but the number of adjuncts
is not lexically bounded, so that it is impossible
to unfold all potential instances of amalgamation.
It is therefore not surprising that in the ERG only
argument extraction is handled via SLASH amal-
gamation, not dependent extraction in general, as
proposed by BMS.7

Third, a lack of generality and modularity of
the ERG encoding derives from the fact that the
ERG encoding employs five independent con-
straints having five different types as antecedent.
So while the principle of figure 1 on the page be-

7In languages exhibiting coherence or restructuring phe-
nomena (e.g., German, Dutch, and the Romance languages),
even the number of arguments is not bounded in the lexicon
since under the normal HPSG analyses of those languages,
certain verbs are specified to attract the arguments of their
complement.

fore applies to all words and thus is dependent
only on what the linguist or grammar writer de-
cided to classify as a word in the grammar, the
ERG unfolding of SLASH amalgamation depends
on five separate classifications, one for each type
of antecedent. As before, this is a loss of modular-
ity since an understanding of the ERG encoding
of SLASH amalgamation is dependent on knowing
where five types are used in the specification of
lexical entries in the grammar, whereas the origi-
nal principle of figure 1 on the preceding page only
requires knowledge of where a single type, word,
is used in the specification of lexical entries in the
grammar.

Fourth, a further lack of generality and trans-
parency of the ERG encoding is caused by the
fact that the ERG encoding imposes five type con-
straints having five different consequents, whereas
a recursive encoding consists of a base clause and
a recursive clause characterizing what is the case
at n + 1 based on knowledge of the state of af-
fairs at n. The recursive case thus is a general-
ization over all cases, starting from the base case;
with a recursive definition it is impossible for e.g.
the fourth case to differ from the third case in
any other way than exactly the way in which the
third case differed from the second case. In con-
trast, there is no such generality across cases for
five separately written down constraints, such as
in the ERG encoding of SLASH amalgamation in
figure 4. How transparent would it be if, e.g., a
couple of variable names in basic tree arg
would be changed such that the SLASH value of
one of the three arguments is not collected? In-
terestingly, closer inspection of the ERG encod-
ing reveals just such a non-generality across cases:
the basic one arg case happens to be special
in that it requires the word from which it collects
slashes to have a canonical synsem, whereas
all other cases require a lex synsem. There
thus is a clear contrast to the SLASH amalgama-
tion principle of BMS which generalizes over all
cases. This generalization is not expressed in the
ERG encoding; instead, one needs to look at every
one of the five constraints separately to know what

7The constraints are shown without the specification of
the QUE and REL attributes. These are amalgamated as well,
so that the actual ERG constraints are three times as large as
the ones shown in figure 4.
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exactly happens to be encoded in each one.
To address the gap in generality, modularity and

transparency between the linguistic principle of
BMS and the ERG encoding of it, the recursive
relations used in the linguistic principle need to
be supported by the grammar implementation sys-
tem. To address all of the issues we raised above,
including the unbounded number of potential de-
pendents, recursive relations need to be fully sup-
ported by the system in the sense that the run-
time environment must support the execution of
recursive relations. The overhead associated with
such a runtime support of relations can often be
avoided though by unfolding and inlining the re-
lation calls at compile time. This corresponds to
inlining of functions and unfolding of loops as a
standard option of compilers for many program-
ming languages. The use of SLASH amalgamation
made in the ERG is an instance where unfolding
of the relation at compile-time is possible (unless
SLASH amalgamation is also applied to adjuncts).
Note that as long as the grammar is specified with
a relation explicitly encoding the generalization to
be captured, most of the shortcomings of the ERG
encoding we discussed above do not apply, inde-
pendent of whether the relational constraints are
ensured by unfolding them at compile-time or by
executing them at run-time.

3 Example 2: Optional complementation

The second example we want to look at in this pa-
per concerns the analysis of optional complements
in the ERG, which is also discussed in Flickinger
(2000).8 The empirical issue of verbs with op-
tional complements is illustrated by the sentences
in (1), which are licensed by the ERG.

(1) a. Kim bet Tom five dollars that they hired
Cindy.

b. Kim bet Tom five dollars.

c. Kim bet Tom that they hired Cindy.

d. Kim bet five dollars that they hired Cindy.

e. Kim bet five dollars.

f. Kim bet that they hired Cindy.

8Whether the treatment of optional complements pro-
posed in Flickinger (2000) is the best analysis for this phe-
nomenon is an orthogonal issue. Our focus is on how the
proposed analysis is reflected in the implementation.

g. Kim bet Tom.

h. Kim bet.

In sentence (1a), the verb bet takes a subject
Kim and three complements, the NPs Tom and five
dollars, as well as the sentential complement that
they hired Cindy. The other sentences in (1) ex-
emplify that each of those three complements is
optional.

The brute-force method for licensing these
structures would be to posit eight independent lex-
ical entries for bet, one for each of the environ-
ments exemplified above. But this would miss
the generalization that bet has three complements,
each of which can be realized or not. As discussed
by Flickinger (2000), the ERG takes this gener-
alization into account and posits only the single
lexical entry shown in figure 5.9
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Figure 5: Lexical entry for bet

The key aspect here is the specification of the
complement requirements on the COMPS list. The
list contains three elements, each of which is
marked as optional with the help of an attribute
OPT(IONAL) appropriate for synsem objects.

In figure 6 on the following page we see the
structure that is licensed for a sentence in which
none of the optional complements are realized,
i.e., sentence (1h). The entry of bet can construct
as the head daughter of such a head subject phrase
even though it has not yet realized its comple-
ments. This is possible since, different from
the traditional HPSG analysis (Pollard and Sag,
1994), the head daughter is not required to be sat-
urated, i.e., have a COMPS value of type e list. In-
stead, a sign is also understood to be saturated for
complements if it has only optional complement
requirements left.

9Here and in the following figures, only the specifications
relevant to the issue of optionality are shown. For space rea-
sons, attributes are sometimes abbreviated by their first letter.
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Figure 6: A sentence with three unrealized complements

Adding the head-complement phrase of the
ERG to the picture, one can also license (1b)
and (1g), which are sentences in which one or
two complements are realized and the other com-
plements, which are more oblique than the ones
that are realized, are missing.10 Figure 7 shows
the relevant aspects of the definition of head-
complement phrases in the ERG. Note that it is
always the first element of the COMPS list that is
realized as the non head dtr of such a phrase.
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Figure 7: The realization of COMPS requirements
in the head-complement rule of the ERG

Figure 8 on the following page shows the struc-
ture that the ERG assigns to the sentence (1g). The
lower tree is an instance of a head comp phrase,
in which the first subcategorization requirement
on COMPS, namely the NP Tom bearing the tag
2 , is realized. The head subject phrase on top is
licensed just as in the previous example, marking
the remaining optional elements on the COMPS list
of the head daughter bet Tom as unexpressed.

Since the head comp phrase in the ERG al-
ways realizes the first element of the COMPS list,
a problem arises if one wants to license a sen-
tence in which the least oblique complement, i.e.,

10The COMPS is ordered by obliqueness, with the least
oblique complement being the first element of the list.

the first element on the COMPS list is optional
and not realized. Note that this is not an acci-
dental oversight in the formulation of the rule li-
censing head comp phrases in the ERG; rather it
is a consequence of the fact that the LKB system
does not support relational goals as attachment to
phrase structure rules. We will see in the next sec-
tion that an implementation platform that includes
such relational goals can express the relevant gen-
eralization, namely that the head comp phrase re-
alizes the first requirement on COMPS which is
not marked as unrealized optional element. In
the ERG as implemented in the LKB system, the
problem is addressed by introducing additional
types of phrases which eliminate the unrealized
optional subcategorization requirements from the
front of the COMPS list in order to bring the
requirement intended to be realized to the first
position of the COMPS list. For this purpose,
in addition to the ordinary head comp phrases,
the ERG needs two additional rules: the
head opt comp phrases which eliminates one op-
tional complement from the front of the COMPS

list, and the head opt two comp phrases which
eliminate first two complement requirements from
the COMPS list. Further additional phrases would
be needed if the grammar had COMPS lists longer
than three.

Figure 9 on the next page illustrates the struc-
ture licensed for sentence (1e), in which only the
second most oblique complement is realized. The
unary structure at the bottom of the tree is an
instance of the additional head opt comp phrase,
whose purpose is the elimination of the first com-
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Figure 8: A sentence in which the two most oblique complements are not realized
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Figure 9: The ERG analysis of a sentence in which only the second most-oblique object is realized
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plement requirement, an unexpressed optional ob-
ject NP, in order to bring the requirement 2 to the
front of the COMPS list. That complement (five
dollars) is then realized in the head comp phrase
dominating the head opt comp phrase.

Capturing the missed generalization We saw
above that the ERG analysis of optional comple-
ments requires three different head-complement
rules since in the LKB system there is no way to
express the relevant generalization that one wants
to realize the first element on the comps list that is
not an unrealized optional argument.

The revised head complement rule in figure 10
shows how the intended generalization can be ex-
pressed using an append relation (⊕) to state that
the element 1 to be realized can be preceded by
an o list, the type used in the ERG to refer to a
list of unrealized optional elements. In a grammar

head comp phrase→







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


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








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]
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Figure 10: Generalized realization of COMPS re-
quirements in the revised head-complement rule

including this revised head complement phrase
instead of the original one from the ERG
we saw in figure 7 on page 5, the types
and definitions for head opt comp phrases and
head opt two comp phrases are no longer needed.
Interestingly, the LKB encoding of the ERG us-
ing a head complement phrase plus the two ‘aux-
iliary’ phrase types used to unearth the first
complement requirement to be realized can be
seen as the result of unfolding the first three
calls to the append (⊕) relation in the revised
head complement phrase defined in figure 10, i.e.,
the LKB encoding can result from a compilation
step taking the more general encoding as its in-
put. This means that the issue of enabling the
grammar writer to express the full generalization
in the grammar as shown by the revised encoding
is independent of the as yet unresolved question of
the relative efficiency of parsing systems with and
without runtime support for relational goals.

4 Summary and Outlook

In this paper we discussed the use of relational
constraints in the implementation of HPSG-based
grammar in pursuit of a modular and reusable
grammar encoding. We based the discussion on
two examples from the English Resource Gram-
mar, the largest HPSG-based grammar for English
currently available, and an insightful collection of
analyses of many aspects of English syntax.

In the first example, we showed that the ERG
unfolds the general SLASH amalgamation princi-
ple of Bouma et al. (2001) into the specific cases
assumed for this particular grammar, which is nec-
essary since relational goals are not supported in
the LKB system. The resulting encoding does not
capture the full generality of the principle and is
less modular and transparent than the formulation
of Bouma et al. (2001) or its computational en-
coding in a framework incorporating recursive re-
lations, such as the Trale system.

In the second example, we discussed how
the ERG captures the optionality of arguments
through the use of a single lexical entry, cou-
pled with an ontology of markings distinguish-
ing optional from obligatory and unrealized
from realized elements. Subject-head and head-
complement structures are modified accordingly,
but due to the lack of a possibility to use re-
cursive relations in grammars implemented in the
LKB system, the ERG analysis fails in treating op-
tional arguments in a general way, requiring two
new types of ‘auxiliary’ phrases which are other-
wise unmotivated. The focus on a very lean sys-
tem without relational goal attachments to phrase
structure rules thus results in a loss of generality
and thereby transparency and modularity of the
grammars that can be expressed. Apart from the
software engineering aspect, this also breaks the
clear link of the implementation to linguistic the-
ory, which in Copestake and Flickinger (2000) is
identified as the hallmark distinguishing the ERG
from other grammar implementation efforts such
as those around the Alvey Natural Language Tools
(Briscoe et al., 1987).

We showed that a recoding of the analysis of
optionality in a system supporting relational at-
tachments can overcome this shortcoming by mak-
ing use of a single recursive relation, append, used

7



to select the first non-optional argument on a list.
A system including relational attachments thus is
better suited to achieve the goal of a modular and
linguistically informed grammar implementation.

We are in the process of reimplementing the
English Resource Grammar to also investigate
in practice which expressive means are useful
for writing modular and transparent HPSG-based
grammars. The Milca English Resource Gram-
mar (MERGE, De Kuthy et al., 2003) is imple-
mented in the Trale system (Meurers et al., 2002),
an extension of the ALE parsing and genera-
tion system (Carpenter and Penn, 1996). In line
with the arguments presented in Götz and Meur-
ers (1997) and standard practice in HPSG linguis-
tics, the Trale system supports both implicational
constraints and relational goals such as the ones
used in the approach to unbounded dependencies
of Bouma et al. (2001) and the analysis of optional
arguments of Flickinger (2000) which were dis-
cussed in this paper.
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