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Abstract

As an extension of decades of syntactic theorizing, treebanks have inherited a
small set of phrasal categories, which abstract over the environments that the
categories can occur in. Extending ideas from Johnson (1998), we explore
encoding information from the local tree context in each category. We then
discuss two clustering techniques which preserve the distributionally rele-
vant category distinction, forming linguistically relevant generalizations and
improving PCFG parsing performance.

1 Introduction

The syntactic annotation schemes used in treebanks typically build on long tradi-
tions of linguistic investigation and analysis. For constituency-based annotation
schemes such as the Penn Treebank (Taylor et al. 2003), the syntactic structure and
the constituency labels are rooted in the distributional analysis of structural lin-
guistics and generative theory, which established a range of constituency tests for
determining and labelling syntactic structure. While the exact nature and reliability
of constituency tests are a recurring subject of debate, the essential idea is readily
apparent in the so-called substitution test: a string that is labelled with a syntactic
category can be substituted with other strings bearing the same label. The result
is another grammatical sentence. In the context of this paper, the relevant aspect
is that substitutability does not make reference to the context in which a category
occurs. A string of a given syntactic category can be replaced with another string
of that category, independent of where it occurs. For example, an NP occurring
as sister of a VP (i.e., a subject), can be realized in all the same ways as an NP
occurring within the VP (i.e., an object). Where this turns out to be empirically
incorrect, distinct categories need to be postulated for the different environments
to capture the difference.

In PCFG parsing, this independence assumption is, of course, taken one step
further by assuming that the different ways of realizing a given category have the
same likelihood independent of the context in which that category occurs. There is
a single probability distribution over the different ways to rewrite a given category,



independent of the context in which it occurs. As before, when this assumption
turns out to be wrong for a specific category occurring in different contexts, the
conclusion is that one needs to assume distinct categories, one for each context in
which its realization differs.

Sidestepping the question for which categories in which contexts additional
category distinctions are warranted, Johnson (1998) explored enriching all nonter-
minal categories in a treebank with information about the context in which they
occur. He enriched each category with the category label of the mother of the
local tree that it occurs in and found that this significantly improves the perfor-
mance of parsing with a PCFG extracted from such a treebank. Klein and Manning
(2003) subsequently pursued manually distinguishing linguistically motivated dis-
tinctions, and automatic methods for dividing the traditional linguistic categories
into a richer category set have resulted in some of the best PCFG parsing results for
the Penn Treebank (cf. Petrov et al. 2006, and references therein). However, these
methods have grown progressively more complex, typically requiring estimations
over entire parse trees and specialized parsing algorithms.

The current study seeks to investigate and measure the impact of the informa-
tion immediately available in the local tree context, using a plain PCFG parser. In
so doing, we seek to isolate the impact of new distinctions in syntactic categories
per se. We map out the maximal category space that can result from including
attested local context distinctions. Then we return to the original linguistic intu-
ition of only keeping those new distinctions which differ in their distribution, i.e.,
we investigate which of the categories resulting from local contextualization are
distinctive enough to warrant distinguishing them categorially.

We begin by measuring the gain in parse performance obtained by contextual-
izing non-preterminals according not only to mother context, as in Johnson (1998),
but also to local left sister and local right sister contexts, individually and in com-
bination. Such contextualization results in a large number of syntactic categories
and rules, which, as motivated above, are not necessarily useful and for which data
sparsity and overfitting to the training data become an issue. We thus proceed by
exploring two methods of clustering the newly created contextualized categories.
Both are based on the distributional similarity of the contextualized categories as
measured by the probability distribution over the local trees dominated by the con-
textualized categories created for a given category. The first method identifies clus-
ters solely on the basis of the similarity of the probability distributions, while the
second method identifies clusters on the basis of expected information gain.

Both clustering methods result in grammars with a dramatically reduced num-
ber of categories and rules compared to raw contextualization and some improve-
ment in parsing results. Additionally, we show that these methods identify theoret-
ically appealing clusters, suggesting that these methods exploit linguistic general-
izations rather than statistical happenstance.



2 Approach

2.1 General Setup

Using the standard setup for English PCFG research, we ran our experiments on
the Wall Street Journal portion of the third edition of the Penn Treebank (Taylor
et al. 2003). We trained on sections 2–21, used section 22 as a development set,
and obtained the final parse performance numbers for section 23. We removed
all grammatical function and coindexation tags, so that every nonterminal node
contained only the core syntactic category information. All nodes dominating only
the empty string were removed from the trees. No other transformations were
performed on the corpus except for the use of contextualized categories explored
in this paper and described below.

2.2 Contextualizing the categories in the training corpus

As our starting point, we contextualized all non-terminal and non-preterminal nodes
according to local mother context, the local left sister context, and the local right
sister context, and in all the combinations thereof. This was done by transforming
the training corpus to enrich each such node with the information from the local
tree it occurs in. Figure 1 exemplifies the transformation that is performed to obtain
the contextualized categories encoding the mother context.
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Figure 1: Encoding the local mother context in the category (à la Johnson)

The special symbol ∅ is used to encode that a particular context does not exist,
such as the mother context of the VP root node in this example. Note also that
the preterminal V is not contextualized, i.e., we do not enrich the set of preter-
minal categories since otherwise we would also need to obtain the contextualized
categories for the input that is to be parsed.1

When contextualizing according to both mother and local right sister context,
we obtain atomic categories of the form Cat_Mother_RightSister. Transforming
the input of Figure 1 using mother and local right sister information results in the
tree shown in Figure 2.

1Such richer lexical categories could possibly be obtained by supertagging, in the spirit of Clark
and Curran (2004). Preliminary experiments including gold-standard contextualized preterminals
with the input obtained F-scores in the low 90’s, suggesting that a supertagging approach would be
worthwhile exploring in future work.
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Figure 2: Result of encoding mother and right sister context in the category

Finally, when contextualizing a category with both the local mother, local left
sister, and local right sister information, we make use of categories of the form
Cat_LeftSister_Mother_RightSister. Throughout the paper, we will refer to the
categories as found in the original treebank as the "original categories" and to the
categories after the above-described transformation as "contextualized categories".

2.3 Grammar extraction and parsing setup

We extracted the grammars from the transformed training corpus in the usual way
by counting the number of times each local tree appears.2

We ran our parsing experiments using BitPar (Schmid 2004), a freely available,
efficient PCFG parser implementation, without lexicalization or additional compo-
nents. As input, we followed the common practice of using the lexical tags from the
original corpus as input, which prevents confounding the comparative contribution
of local context with the accuracy of a separate part-of-speech analysis.3

For evaluation, we mapped the output of the parser, bearing the contextualized
categories, back to the original categories simply by stripping off the contextualiza-
tion suffix. We evaluated parse performance on sentences with 40 or fewer words
from the original corpus in terms of labelled bracketing precision, recall, and F-
score using the standard EVALB program (Sekine and Collins 1997). Failed parses
were handled by assigning each word in the failed sentence the tag ‘FAILED’, so
that the precision, recall, and F-score numbers produced by EVALB correctly re-
flect the performance on the complete corpus section.

2.4 Experiment 1: The space of locally contextualized categories

We first explored the contribution of the local left daughter, the local right daughter,
and the local mother context, as well as combinations thereof. The parsing perfor-
mance resulting for the locally-contextualized grammars is shown in Table 1.

2We performed no smoothing whatsoever. In particular, we did not assign non-zero counts to rules
which could be constructed by inserting all potential contextualized categories for each category in
each local tree. Only local trees actually occurring in the transformed training corpus were counted.

3For BitPar we thus used a dummy lexicon that pairs each part-of-speech tag with itself.



Prec. Recall F Failed Categ. Nonce Rules
Baseline 74.79 69.94 72.28 0% 28 1 14,974
Mother (M) 81.10 79.64 80.36 0% 300 62 22,696
Left Sister (L) 79.75 78.05 78.89 0% 648 182 32,304
Right Sister (R) 80.10 77.02 78.53 0% 523 170 26,327
L & R 80.49 80.79 80.64 0.13% 3,004 1,263 47,677
M & L 81.44 80.86 81.15 0.09% 1,905 723 38,350
M & R 82.37 82.07 82.22 0% 1,592 640 34,390
M & L & R 80.99 81.34 81.16 0.8% 5,177 2,627 52,756

Table 1: Parsing results for categories contextualized with local tree information

The table separately lists the percentage of failed parses, but these are taken into
account in the precision and recall figures. The table also includes the number of
categories in the training set, the number of categories occurring only once in the
training set, and the number of rules, i.e., distinct local trees in the training set.

The parsing performance figures in Table 1 show that every contextualiza-
tion scheme outperforms the baseline grammar, which is the grammar extracted
from the original corpus, i.e., without contextualization. Moreover the two-context
grammars outperform the single-context grammars. The mother-right-sister gram-
mar, the best case, outperforms the baseline grammar in terms of F-score by 10%.

Interestingly, the three-context mother-both-sisters grammar underperforms the
two-context mother-right-sister grammar. As left-sister context is beneficial in ev-
ery other case, it seems that the decrease in performance is due to the data sparsity
concomitant with the exploding number of both rules and categories. The mother-
both-sisters grammar contains more than three times as many categories as the
mother-right-sister grammar. Fully half of the categories in the mother-both-sisters
grammar are observed only once in the training set, and that grammar also exhibits
the most failed parses. These nonce categories are particularly alarming because
they are essentially descriptions of single data instances without evidence for gen-
eralization; one thus has to expect that an equal number of specialized categories
is needed for unseen data, which are missing from the grammar derived from the
training corpus.

2.5 Determining which of the contextualized categories are motivated

While it is possible to introduce all category distinctions derivable from the local
context, as in the results reported in the previous section, there is a clear price for
introducing spurious distinctions. There only is a limited amount of training data,
so the more category distinctions are introduced, the less empirical evidence is
available to characterize the distributional properties of a given distinction. Rather
than handle this data sparsity problem with clever smoothing techniques, we are
interested in whether unmotivated distinctions can be automatically collapsed to
recover a smaller, more general category set.

Returning to the original motivation for postulating contextualized categories



from the introduction, we should only use new category distinctions when a cate-
gory in a particular context is not realized in the same way as in other contexts. As a
measure of how different two contextualized variants of the same category are, we
use the relative frequencies over the possible right-hand sides for those categories,
i.e., we count in the training data how often each contextualized category immedi-
ately dominates which daughters, divided by the number of total occurrences of the
contextualized category. We represent these relative frequencies as a vector with
one dimension for every distinct expansion the original category can take. Note
that the vectors of the contextualized categories have the same dimensionality as
the vector of the original category they are derived from.

To keep only the relevant contextualized categories, we collapse distinctions
between contextualized categories which have similar expansion vectors, which
we assess using hierarchical clustering. Agglomerative hierarchical clustering pro-
duces a dendrogram, such as the one we will see in Figure 3 below, which expresses
the similarity not only between individual items but also between groups of items.

Lee (1999) demonstrates that distributional similarity measures differ from
each other in terms of their attention to the support4 of each distribution being
compared, and finds that those which focus on the intersection of the supports per-
form best. We require our measure to be symmetric not only due to the constraints
of hierarchical clustering but also because we aim to collapse distinctions between
contextualized categories which may be freely substituted for each other. Indeed,
this very intersubstitutability forms the basic notion of a syntactic category. We
tried both symmetric similarity measures examined by Lee, the Jensen-Shannon
Divergence and the Manhattan distance, and obtained very similar results from
each. This is not surprising, given that they consider the same information and
performed similarly on Lee’s own assessment of the measures. For felicity of ex-
position we present only results for the somewhat simpler Manhattan distance:

Manhattan (p, q) =
∑n

i=0 |pi − qi|

To obtain the hierarchically clustered dendrograms, we used the hclust routine
from the R statistical package (R Development Core Team 2007). It proceeds using
a recursive bottom-up algorithm, each step of which calculates pairwise distances
between the clusters of probability vectors under consideration, and assigns the
two least distant clusters to a new cluster. We use ‘complete link’ clustering, where
the distance between two clusters is the distance between the two members most
distant from each other.5 The algorithm proceeds until only one cluster remains.

Hierarchical clustering can be an effective method for capturing linguistic gen-
eralizations, as exemplified by the dendrogram for particle (‘PRT’) contextualized
according to mother and right sister displayed in Figure 3. There are two clear
groupings that can be identified in the dendrogram. The smaller grouping, on the

4The support of a distribution is the set of dimensions with non-zero values.
5This marginally outperformed calculating cluster distance in terms of average vectors and vec-

tors calculated directly from observed cluster member counts.
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Figure 3: Dendrogram for particle (PRT) contextualized with mother-right-sister

right, consists of particles with a variety of mothers but with no local right sister,
meaning that the smaller grouping corresponds to phrase-final particles, i.e., par-
ticles displaced to the end of the verb phrase or particles to verbs with no locally
realized complement. The larger grouping consists of particles with a right sister
(in all but one of twenty-one items) and it corresponds roughly to particles be-
tween a verb and its complements. In fact, when the left sister context is added, all
three distinctions (particle with no complement, non-displaced particle, displaced
particle) become evident in the larger dendrogram.

Dendrograms portray how contextualized categories and groups of contextu-
alized categories relate to each other generally. As we want to collapse distinc-
tions between similar contextualized categories while maintaining distinctions be-
tween different contextualized categories, we will essentially prune the dendro-
gram. Not contextualizing at all is equivalent to cutting the dendrogram at the root
node, whereas contextualizing fully is equivalent to cutting the dendrogram at the
leaf nodes. As we have seen, the former loses useful distributional information,
whereas the latter gives rise to data sparsity problems compromising the reliability
of the information. The intention is to prune somewhere in the middle – where
exactly, and based on which criterion, is discussed further below.

2.6 Setup

We ran our clustering methods on two contextualized treebank versions. The one
with mother-right-sister context categories was included because it achieved the
best unclustered performance. The mother-both-sisters context version was used
because it included the largest set of categories, which in principle can provide the
most information (in addition to the irrelevant distinctions we want to prune away).

For the two experiments in this section, the training corpus undergoes a sec-
ond transformation after the contextualization step, in which the contextualization



annotation is replaced with the label of the appropriate cluster. Contextualized
categories assigned to singleton clusters naturally can keep their names as these
names are straightforward atomic symbols. For example, assume that the cluster-
ing procedure assigns NP_NP_∅ and NP_NP_PP to a cluster NP_3, and that the
other contextualized categories in Figure 2 are assigned to singleton clusters, the
tree of Figure 2 would be transformed to the one in Figure 4.

VP_∅_∅

V

...

NP_VP_NP

ADJP_NP_NP

...

NP_3

...

NP_VP_∅

NP_3

...

PP_NP_∅

...

Figure 4: Tree with mother and right sister context categories after clustering

2.7 Experiment 2: Clustering according to Dendrogram Height

Remember that each iteration of the hierarchical clustering algorithm calculates
pairwise distances between all the vectors to be clustered and merges the two least
distant vectors. The dendrogram records the distance at which each pair of vectors
was merged in the height of the node representing the merge, displayed in the y-axis
of the example dendrogram in Figure 3. The smaller the height, the more similar
the probability distribution over the expansions for the two (sets of) contextualized
categories – and the less we want to keep that category distinction.

Our first method thus simply defines clusters to be the largest sub-dendrograms
whose merge height is less than some cut-off value. Using the development set, we
found that a cut-off value of 0.7 worked best for mother-right-sister context and that
a cut-off value of 1 worked best for mother-both-sisters context. The performance
of these height-clustered grammars on the test set is shown in Table 2.

Precision Recall F Failed Categ. Nonce Rules
Baseline 74.79 69.94 72.28 0% 28 1 14,974

Mother and Right Sister
Unclustered 82.37 82.07 82.22 0% 1,592 640 34,390
Height-Clust. 82.13 81.83 81.98 0% 849 224 29,259
KLD-Clust. 82.35 81.41 81.88 0% 215 21 24,392

Mother and Both Sisters
Unclustered 80.99 81.34 81.16 0.8% 5,177 2,627 52,756
Height-Clust. 82.17 82.57 82.37 0% 1,672 556 33,628
KLD-Clust. 82.32 82.24 82.28 0% 495 87 28,781

Table 2: Parsing results for unclustered and clustered contextualized categories

We see that in both Mother and Right Sister as well as Mother and Both Sisters



contextualization schemes, clustering according to dendrogram height effectively
decreases the number of syntactic categories, nonce categories, and distinct rules.
However, we see a benefit in parse performance only in the case of mother-both-
sisters context. The improvement confirms the conjecture that the earlier underper-
formance of mother-both-sisters’ context was due to data sparsity.

2.8 Experiment 3: Clustering according to expected information gain

The dendrogram expresses distance relationships between the contextualized ex-
pansion vectors without reference to the expansion vector of the original category.
The above clustering method, then, identifies clusters consisting of contextualized
categories which are similar to each other – but not necessarily different from the
original category. We thus tried a second clustering method, which instead iden-
tifies sub-dendrograms which diverge from the original category. We evaluate the
divergence in terms of the Kullback-Leibler Divergence (KLD)6 of the expansion
distribution from that of the original category:

KLD(p, q) =
∑n

i=0 pi · log2
(

pi
qi

)
The Kullback-Leibler divergence of one probability distribution p from another

q expresses the amount of information lost, in bits, by using q to encode the behav-
ior of p. In our terms, then, this sum represents the information lost by ignoring
that a particular syntactic node appears with a particular class of contexts.7

The KLD-based method described here involves pruning the same dendrogram
as in experiment 2. But this time the cut-off values are in terms of the Kullback-
Leibler Divergence of the expansion vector at the dendrogram node from that of
the overall category. Any sub-dendrogram which exceeds the KLD cut-off value is
assigned to its own cluster.

The underlying dendrogram is derived using the same pairwise Manhattan-
distance computation as before since the Kullback Leibler Divergence is not a re-
placement for the pairwise distance measure. It is not symmetric and it does not
satisfy the triangle inequality8. Note that this method evaluates only the subset of
the powerset of the contextualized categories provided by the dendrogram. There
may be a member of that powerset which would obtain a large KLD but is not
itself made available by the dendrogram because it does not consist of contextu-
alized categories deemed maximally intersubstitutable by the Manhattan distance.
Our particular method creates the largest possible clusters given that dendrogram
by beginning at the root node of the dendrogram and descending until an excess of
the cut-off value is encountered. The KLD of successive sub-dendrograms does not
necessarily increase monotonically, and beginning from the leaves and moving up
would likely result in more clusters with fewer members. The representative vector

6An alternative choice would be Lee (1999)’s α-skew divergence, which is essentially a smoothed
version of the Kullback-Leibler divergence, and thus in our context only adds orthogonal complexity.

7Since many dimensions of the category vectors are 0, one frequently relies on 0 · log(0) = 0.
8In other words, KLD(a, b) + KLD(b, c) ≥ KLD(a, c) does not necessarily hold.



used to compute the KLD for a sub-dendrogram is recalculated directly from the
counts observed for each member of the sub-dendrogram.

Proceeding top-down in the dendrogram, it is possible to descend all the way to
the leaves without obtaining a large Kullback-Leibler divergence from the original
category’s expansion vector. As these leaves have been determined to be similar
to each other by the dendrogram and non-divergent from the original category, we
assign each hitherto unclustered sub-dendrogram to be its own cluster.9 In sum, the
method used in this experiment collapses distinctions between expansion vectors
which are both similar to each other and indistinct from the norm.

Using the development set, we found that a cut-off of 1 worked best for mother-
right-sister context and that a cut-off of 2 worked best for mother-both-sisters con-
text. The parse performance results for the test set are included in Table 2, dis-
played in the previous section. We see that the performance of the KLD-clustering
grammars is almost identical to that of the height-clustering grammars. However,
the KLD-clustering grammars exhibit dramatically fewer categories, nonce cate-
gories, and unique rules than do the height-clustering grammars.

2.9 Comparing clustering methods

One way to assess and compare these clustering methods is to look at the number
of clusters produced for each original category. Table 3 displays such data for the
grammar contextualized with mother and both sisters.

For each original category, it lists the number of subcategories created by raw
contextualization, after height-clustering, and after KLD-clustering along with the
ratio of clustered subcategories to contextualized subcategories within each clus-
tering method as a percent. We observe great variability in the number of distinct
contexts that original categories appear in, ranging from just eight contexts in the
case of WHADJP to 1,043 in the case of NP. Wh-phrases appear in a substan-
tially smaller number of contexts than do their non-wh-counterparts. Although the
number of contextualized subcategories obviously limits the number of clustered
subcategories, the number of contextualized categories does not necessarily pre-
dict the number of clustered categories. For example, PRT (Particle) appears in
93 distinct contexts whereas UCP (Unlike Coordinate Phrase) appears in only 72,
but PRT is consolidated into 5 clusters (height) or 2 clusters (KLD), whereas UCP
appears significantly more diverse with 63 (height) and 27 (KLD) clusters.

Both clustering methods rely on pulling out sub-dendrograms on the basis of
some cut-off value, which we crudely optimized by trying values to maximize the
F-score on the development set. However, the significant variability apparent from

9We could alternatively assign all non-divergent contextualized categories to the same cluster, es-
sentially using the dendrogram only to identify divergent clusters. This method performed poorly on
the development set, suggesting that sub-dendrograms whose expansion vectors do not diverge from
the original category’s expansion vector do diverge from each other significantly. This is reasonable,
as distinct sub-dendrograms are distinct precisely because the hierarchical clustering algorithm found
them to be different from each other.



Original Ctxt’d
Clustered

Original Ctxt’d
Clustered

Height KLD Height KLD
ADJP 465 178 (38%) 52 (11%) S 457 52 (11%) 66 (14%)
ADVP 601 107 (18%) 21 (3%) SBAR 360 48 (13%) 28 (8%)
CONJP 46 9 (20%) 2 (4%) SBARQ 37 18 (49%) 9 (24%)
FRAG 78 59 (76%) 23 (29%) SINV 46 32 (70%) 2 (4%)
INTJ 44 14 (32%) 4 (9%) SQ 52 39 (75%) 7 (13%)
LST 13 6 (46%) 1 (8%) UCP 72 63 (88%) 27 (38%)
NAC 51 19 (37%) 7 (14%) VP 319 202 (63%) 24 (8%)
NP 1043 474 (45%) 76 (7%) WHADJP 8 3 (38%) 1 (13%)
NX 59 37 (63%) 18 (31%) WHADVP 43 3 (7%) 3 (7%)
PP 734 51 (7%) 23 (3%) WHNP 54 16 (30%) 8 (15%)

PRN 325 148 (46%) 66 (20%) WHPP 13 3 (23%) 1 (8%)
PRT 93 5 (5%) 2 (2%) X 57 32 (56%) 16 (28%)
QP 94 45 (48%) 4 (4%) ROOT 1 1 (100%) 1 (100%)

RRC 11 7 (64%) 2 (18%) PRT|ADVP 1 1 (100%) 1 (100%)
TOTALS 5,177 1,672 495

Table 3: Breakdown by original category for the mother-both-sisters grammar

the subcluster counts in Table 3 suggests that a single cut-off value, while optimized
for the contextualization scheme as a whole, is not necessarily optimal for each
original category. Indeed, in the discussion of PRT dendrograms in section 2.5 we
mentioned that three theoretically-appealing subclusters are readily apparent from
the mother-both-sisters dendrogram. But neither method successfully identifies
exactly three. Height-clustering creates 5 clusters, forming one cluster each for
two of the groups, but splitting the third into three singleton subcategories. KLD-
clustering obtains two clusters, conflating into one subcategory the first two groups
distinguished by height-clustering, but appealingly clustering into one subcategory
the remaining three ‘missed’ by height-clustering. An approach which optimizes
the cut-off values for each original category might improve clustering further.

3 Summary and Outlook

Extending ideas from Johnson (1998), we explored enriching the syntactic category
distinctions in the Penn Treebank with the contextual information available within
the local tree. PCFG parsing experiments using a grammar extracted from the
enriched corpus confirm that significant information about the expansion properties
of syntactic categories is immediately available in the local context.

At the same time, blindly introducing all contextually possible category dis-
tinctions results in well-known data sparsity issues, with many of the possible cat-
egories only rarely or never occurring in the training data. We therefore explored
introducing only those contextualized categories which are distributionally distinct,
as measured by the probability distribution over the local expansions. We showed
that clustering can identify theoretically appealing clusters, automatically exploit-
ing linguistic generalizations. Clustering based on the distance between contextu-



alized categories was equally effective as clustering based on the divergence of a
contextualized category from the original category, even though the latter resulted
in fewer clusters.

The relevance of the local context for defining or enriching the category set
can be seen as an interesting reflection of the role of such context frames in the
acquisition of categories during language acquisition (cf., e.g., Mintz 2003).

In future work, we intend to explore whether the approach can help identify
distributionally relevant category information from outside the domain of syntax
per se. For example, we are investigating whether the method can identify dis-
tributionally valuable category distinctions based on spoken language input that
includes intonational phrasing and other prosodic information.
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